
CMPE 150/L : Introduction to
Computer Networks

Chen Qian

Computer Engineering

UCSC Baskin Engineering

Lecture 18

1

Final Exam

 Thursday March 23rd.

 12:00-3:00pm

 Cheat sheet is allowed (same requirement
of midterm)

1-2

Link Layer 5-3

Synthesis: a day in the life of a web request

 journey down protocol stack complete!
 application, transport, network, link

 putting-it-all-together: synthesis!
 goal: identify, review, understand protocols (at all

layers) involved in seemingly simple scenario:
requesting www page

 scenario: student attaches laptop to campus network,
requests/receives www.google.com

Link Layer 5-4

A day in the life: scenario

Comcast network

68.80.0.0/13

Google’s network

64.233.160.0/19 64.233.169.105

web server

DNS server

school network

68.80.2.0/24

web page

browser

router

(runs DHCP)

Link Layer 5-5

A day in the life… connecting to the Internet

 connecting laptop needs to
get its own IP address, addr
of first-hop router, addr of
DNS server: use DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCPDHCP

 DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.3
Ethernet

 Ethernet frame broadcast
(dest: FFFFFFFFFFFF) on LAN,
received at router running
DHCP server

 Ethernet demuxed to IP
demuxed, UDP demuxed to
DHCP

router

(runs DHCP)

Link Layer 5-6

 DHCP server formulates
DHCP ACK containing
client’s IP address, IP
address of first-hop router
for client, name & IP
address of DNS server

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

UDP

IP

Eth

Phy

DHCP

DHCP

DHCP

DHCP

DHCP

 encapsulation at DHCP
server, frame forwarded
(switch learning) through
LAN, demultiplexing at
client

Client now has IP address, knows name & addr of DNS

server, IP address of its first-hop router

 DHCP client receives
DHCP ACK reply

A day in the life… connecting to the Internet

router

(runs DHCP)

Link Layer 5-7

A day in the life… ARP (before DNS, before HTTP)

 before sending HTTP request, need
IP address of www.google.com:
DNS

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

 DNS query created, encapsulated in
UDP, encapsulated in IP,
encapsulated in Eth. To send frame
to router, need MAC address of
router interface: ARP

 ARP query broadcast, received by
router, which replies with ARP
reply giving MAC address of
router interface

 client now knows MAC address
of first hop router, so can now
send frame containing DNS
query

ARP query

Eth

Phy

ARP

ARP

ARP reply

router

(runs DHCP)

Link Layer 5-8

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

DNS

DNS

 IP datagram containing DNS
query forwarded via LAN
switch from client to 1st hop
router

 IP datagram forwarded from
campus network into comcast
network, routed (tables created
by RIP, OSPF, IS-IS and/or BGP
routing protocols) to DNS server

 demux’ed to DNS server

 DNS server replies to client
with IP address of
www.google.com

Comcast network

68.80.0.0/13

DNS server

DNS

UDP

IP

Eth

Phy

DNS

DNS

DNS

DNS

A day in the life… using DNS

router

(runs DHCP)

Link Layer 5-9

A day in the life…TCP connection carrying HTTP

HTTP

TCP

IP

Eth

Phy

HTTP

 to send HTTP request,
client first opens TCP socket
to web server

 TCP SYN segment (step 1 in 3-
way handshake) inter-domain
routed to web server

 TCP connection established!64.233.169.105

web server

SYN

SYN

SYN

SYN

TCP

IP

Eth

Phy

SYN

SYN

SYN

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

SYNACK

 web server responds with TCP
SYNACK (step 2 in 3-way
handshake)

router

(runs DHCP)

Link Layer 5-10

A day in the life… HTTP request/reply

HTTP

TCP

IP

Eth

Phy

HTTP

 HTTP request sent into TCP
socket

 IP datagram containing HTTP
request routed to
www.google.com

 IP datagram containing HTTP
reply routed back to client

64.233.169.105

web server

HTTP

TCP

IP

Eth

Phy
 web server responds with

HTTP reply (containing web
page)

HTTP

HTTP

HTTPHTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

 web page finally (!!!) displayed

Final Review

 Everything mentioned in Lectures 2 - 18

5-11

Internet Evolution

12

1 2 3 4 5

1: Connecting (few) computers: e-mail, file transfer, remote login.
2: Connecting larger number of computers: sharing information
(WWW).
3: Connecting wireless and mobile devices.
4: Connecting people: social networks.
5: Connecting objects: Information-Centric Networks (ICNs), Internet
of Things (IoT), Context-Aware Networking.

Host: sends packets of data

host sending function:

 takes application message

 breaks into smaller
chunks, known as packets,
of length L bits

 transmits packet into
access network at
transmission rate R

 link transmission rate,
aka link capacity, aka
link bandwidth

R: link transmission rate
host

12

two packets,

L bits each

packet
transmission

delay

time needed to
transmit L-bit

packet into link

L (bits)

R (bits/sec)
= =

13

Packet Switching: queueing delay, loss

A

B

CR = 100 Mb/s

R = 1.5 Mb/s
D

Equeue of packets
waiting for output link

14

queuing and loss:
 If arrival rate (in bits) to link exceeds transmission rate of

link for a period of time:

 packets will queue, wait to be transmitted on link

 packets can be dropped (lost) if memory (buffer) fills up

Packet switching versus circuit switching

example:

 1 Mb/s link

 each user:
• 100 kb/s when “active”
• active 10% of time

circuit-switching:
 10 users

packet switching:
 with 35 users, probability >

10 active at same time is less
than .0004 *

packet switching allows more users to use network!

N
users

1 Mbps link

Q: how did we get value 0.0004?

Q: what happens if > 35 users ?

15

 great for bursty data

 resource sharing

 simpler, no call setup

 excessive congestion possible: packet delay and loss

 protocols needed for reliable data transfer, congestion
control

is packet switching a “slam dunk winner?”

Packet switching versus circuit switching

16

Internet structure: network of networks

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
net

access
netaccess

net

access
net

Option: connect each access ISP to a global transit ISP? Customer
and provider ISPs have economic agreement.

global

ISP

Internet structure: network of networks

 at center: small # of well-connected large networks
 “tier-1” commercial ISPs (e.g., Level 3, Sprint, AT&T, NTT), national &

international coverage

 content provider network (e.g, Google): private network that connects
it data centers to Internet, often bypassing tier-1, regional ISPs

18

access

ISP

access

ISP

access

ISP

access

ISP

access

ISP

access

ISP

access

ISP

access

ISP

Regional ISP Regional ISP

IXP IXP

Tier 1 ISP Tier 1 ISP Google

IXP

Four sources of packet delay

dproc: nodal processing
 check bit errors

 determine output link

 typically < msec

A

B

propagation

transmission

nodal

processing queueing

dqueue: queueing delay
 time waiting at output link

for transmission

 depends on congestion
level of router

dnodal = dproc + dqueue + dtrans + dprop

19

dtrans: transmission delay:
 L: packet length (bits)

 R: link bandwidth (bps)

 dtrans = L/R

dprop: propagation delay:
 d: length of physical link

 s: propagation speed in medium
(~2x108 m/sec)

 dprop = d/s

Four sources of packet delay

propagation

nodal

processing queueing

dnodal = dproc + dqueue + dtrans + dprop

20

A

B

transmission

Throughput (more)

 Rs < Rc What is average end-end throughput?

Rs bits/sec Rc bits/sec

 Rs > Rc What is average end-end throughput?

link on end-end path that constrains end-end throughput

bottleneck link

Rs bits/sec Rc bits/sec

21

No higher than Rs !

No higher than Rc !

Internet protocol stack

 application: supporting network
applications
 FTP, SMTP, HTTP

 transport: process-process data
transfer
 TCP, UDP

 network: routing of datagrams
from source to destination
 IP, routing protocols

 link: data transfer between
neighboring network elements
 Ethernet, 802.111 (WiFi), PPP

 physical: bits “on the wire”

application

transport

network

link

physical

22

Introduction

Bad guys: put malware into hosts via Internet

 malware can get in host from:

 virus: self-replicating infection by receiving/executing
object (e.g., e-mail attachment)

 worm: self-replicating infection by passively receiving
object that gets itself executed

 spyware malware can record keystrokes, web
sites visited, upload info to collection site

 infected host can be enrolled in botnet, used for
spam. DDoS attacks

1-23

Client/server versus P2P

 Throughput and
Scalability:

 P2P wins!

 Because a server can
only serve limited
number of clients

 P2P allows clients
exchange data among
them.

 That’s why P2P
became popular in
early 2000

 Management

 C/S wins!

 Because users in P2P are
HIGHLY unreliable.

 In the recent years,
throughput are not a big
problem, management
became the main issue.

 That’s why we now switch
back to C/S

Application Layer 24

Application Layer 25

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-
bit IP address

 Q: does IP address of host
on which process runs
suffice for identifying the
process?

 identifier includes both IP
address and port numbers
associated with process on
host.

 example port numbers:
 HTTP server: 80

 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12

 port number: 80

 A: no, many processes
can be running on same
host

Application Layer 26

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

Application Layer 27

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Application Layer 28

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

Application Layer 29

HTTP connections

non-persistent HTTP

 at most one object
sent over TCP
connection

 connection then
closed

 downloading multiple
objects required
multiple connections

persistent HTTP

 multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 30

More about Web caching

 cache acts as both
client and server
 server for original

requesting client

 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access link

When is cache not good?

 Every client of the ISP
requests different
content.
 Waste time on visiting

cache server

Application Layer 31

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 FTP server maintains
“state”: current directory,
earlier authentication

Application Layer 32

user

agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail

server

mail

server

1

2 3 4

5

6

Alice’s mail server Bob’s mail server

user

agent

Application Layer 33

Mail access protocols

 SMTP: delivery/storage to receiver’s server

 mail access protocol: retrieval from server

 POP: Post Office Protocol [RFC 1939]: authorization,
download

 IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored msgs on
server

 HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user

agent

user

agent

Application Layer 34

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu

DNS servers

umass.edu

DNS servers
yahoo.com

DNS servers
amazon.com

DNS servers

pbs.org

DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:

 client queries root server to find com DNS server

 client queries .com DNS server to get amazon.com DNS server

 client queries amazon.com DNS server to get IP address for
www.amazon.com

… …

Application Layer 35

DNS: services, structure

why not centralize DNS?
 single point of failure

 traffic volume

 distant centralized database

 maintenance

DNS services
 hostname to IP address

translation

 load distribution

 replicated Web
servers: many IP
addresses correspond
to one name

A: doesn’t scale!

Application Layer 36

DNS: caching, updating records

 once (any) name server learns mapping, it caches
mapping
 cache entries timeout (disappear) after some time (TTL)

 TLD servers typically cached in local name servers

• thus root name servers not often visited

 cached entries may be out-of-date (best effort
name-to-address translation!)
 if name host changes IP address, may not be known

Internet-wide until all TTLs expire

Application Layer 2-37

P2P architecture

 no always-on server

 arbitrary end systems directly
communicate

 peers are intermittently connected
and change IP addresses

examples:
 file distribution (BitTorrent)

 Streaming (KanKan)

 VoIP (Skype)

 However, most of them
requires a central server to
manage the peers

38

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

39

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries one
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

40

UDP: User Datagram Protocol [RFC 768]

 “best effort” service,
UDP segments may be:

 lost

 delivered out-of-order
to app

 connectionless:

 no handshaking
between UDP sender,
receiver

 each UDP segment
handled independently
of others

 UDP use:
 streaming multimedia

apps (loss tolerant, rate
sensitive)

 DNS

 Simple Network
Management Protocol
(SNMP)

41

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment

 check if computed
checksum equals checksum
field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

42

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

At the receiver, adding all words and checksum, the result
should be all ones. If there is a 0, some error must happen.

43

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

uc_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

44

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly
tells sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

rdt2.1: idea

 Sender puts a seq num
0 or 1 to each
segment.

 It sends a segment
with 0 and then wait
for an ACK.

 If receives ACK
 Sends a segment with

1

 If receives NAK or
corrupted ACK
 Resends the segment

with 0.

 Receiver receives a
segment with 0.
 Replies an ACK.

 Then if it receives a
segment with 1.
 The sender must

received the ACK.

 If receives a segment
with 0.
 The sender did not

receive the ACK.

Transport Layer 3-45

46

rdt2.2: a NAK-free protocol

 same functionality as rdt2.1, using ACKs only

 instead of NAK, receiver sends ACK for last pkt
received OK
 receiver must explicitly include seq # of pkt being ACKed

 duplicate ACK at sender results in same action as
NAK: retransmit current pkt

47

rdt3.0: channels with errors and loss

new assumption:
underlying channel can
also lose packets
(data, ACKs)

 checksum, seq. #,
ACKs, retransmissions
will be of help … but
not enough

approach: sender waits
“reasonable” amount of
time for ACK

 retransmits if no ACK
received in this time

 if pkt (or ACK) just delayed
(not lost):

 retransmission will be
duplicate, but seq. #’s
already handles this

 receiver must specify seq
of pkt being ACKed

 requires countdown timer

48

Pipelined protocols: overview

Go-back-N:
 sender can have up to

N unacked packets in
pipeline

 receiver only sends
cumulative ack
 doesn’t ack packet if

there’s a gap

 sender has timer for
oldest unacked packet
 when timer expires,

retransmit all unacked
packets

Selective Repeat:
 sender can have up to N

unack’ed packets in
pipeline

 rcvr sends individual ack
for each packet

 sender maintains timer
for each unacked packet
 when timer expires,

retransmit only that
unacked packet

Transport Layer 3-49

TCP round trip time, timeout

Q: how to set TCP
timeout value?

 longer than RTT

 but RTT varies

 too short: premature
timeout, unnecessary
retransmissions

 too long: slow reaction
to segment loss

Q: how to estimate RTT?
 SampleRTT: measured

time from segment
transmission until ACK
receipt

 ignore retransmissions

 SampleRTT will vary, want
estimated RTT “smoother”
 average several recent

measurements, not just
current SampleRTT

Transport Layer 3-50

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1-)*EstimatedRTT + *SampleRTT

 exponential weighted moving average
 influence of past sample decreases exponentially fast
 typical value: = 0.125

TCP round trip time, timeout

R
T
T
 (

m
ill

is
e
co

n
d
s)

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

sampleRTT

EstimatedRTT

time (seconds)

Transport Layer 3-51

 timeout interval: EstimatedRTT plus “safety margin”
 large variation in EstimatedRTT -> larger safety margin

 estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-)*DevRTT +

*|SampleRTT-EstimatedRTT|

TCP round trip time, timeout

(typically, = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-52

TCP fast retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-
to-back

 if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),

resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 3-53

TCP flow control
application

process

TCP socket
receiver buffers

TCP
code

IP
code

application

OS

receiver protocol stack

application may
remove data from

TCP socket buffers ….

… slower than TCP
receiver is delivering
(sender is sending)

from sender

receiver controls sender, so

sender won’t overflow

receiver’s buffer by transmitting

too much, too fast

flow control

Transport Layer 3-54

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

 Throughput:
 Data rate at the

receiver

 Goodput:
 Rate at the receiver

for data without
duplicate!

Transport Layer 55

Transport Layer 56

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

LastByteAcked
< cwnd

sender sequence number space

rate ~~
cwnd

RTT
bytes/sec

Transport Layer 57

TCP Slow Start

 when connection begins,
increase rate
exponentially until first
loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

 summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 58

TCP: detecting, reacting to loss

 loss indicated by timeout:
 set a threshold ssthresh to half of the cwnd;

 cwnd set to 1 MSS (by both TCP Tahoe and Reno);

 window then grows exponentially (as in slow start)
to threshold, then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

 TCP RENO: loss indicated by 3 duplicate ACKs
 dup ACKs indicate network capable of delivering

some segments

 cwnd is cut in half window then grows linearly

Transport Layer 59

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

Implementation:
 variable ssthresh

 on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Network Layer 60

Network layer service models:

Network

Architecture

Internet

ATM

ATM

ATM

ATM

Service

Model

best effort

CBR

VBR

ABR

UBR

Bandwidth

none

constant

rate

guaranteed

rate

guaranteed

minimum

none

Loss

no

yes

yes

no

no

Order

no

yes

yes

yes

yes

Timing

no

yes

yes

no

no

Congestion

feedback

no (inferred

via loss)

no

congestion

no

congestion

yes

no

Guarantees ?

ATM has various guarantees. Internet has almost none

Network Layer 61

Longest prefix matching

Destination Address Range

11001000 00010111 00010*** *********

11001000 00010111 00011000 *********

11001000 00010111 00011*** *********

otherwise

DA: 11001000 00010111 00011000 10101010

examples:

DA: 11001000 00010111 00010110 10100001 which interface?

which interface?

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

longest prefix matching

Link interface

0

1

2

3

Network Layer 62

Datagram or VC network: why?

Internet (datagram)
 data exchange among

computers
 “elastic” service, no strict

timing req.

 many link types
 different characteristics

 uniform service difficult

 “smart” end systems
(computers)
 can adapt, perform control,

error recovery

 simple inside network,
complexity at “edge”

ATM (VC)
 evolved from telephony
 human conversation:

 strict timing, reliability
requirements

 need for guaranteed service

 “dumb” end systems
 telephones
 complexity inside

network

Network Layer 4-63

ver length

32 bits

data

(variable length,

typically a TCP

or UDP segment)

16-bit identifier

header

checksum

time to

live

32 bit source IP address

head.

len

type of

service

flgs
fragment

offset
upper

layer

32 bit destination IP address

options (if any)

IP datagram format
IP protocol version

number

header length

(bytes)

upper layer protocol

to deliver payload to

total datagram

length (bytes)

“type” of data
for

fragmentation/

reassemblymax number

remaining hops

(decremented at

each router)

e.g. timestamp,

record route

taken, specify

list of routers

to visit.

how much overhead?

 20 bytes of TCP

 20 bytes of IP

 = 40 bytes + app
layer overhead

Network Layer 4-64

IP addressing: introduction

 IP address: 32-bit
identifier for host, router
interface

 interface: connection
between host/router and
physical link
 router’s typically have

multiple interfaces

 host typically has one or
two interfaces (e.g., wired
Ethernet, wireless 802.11)

 IP addresses associated
with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11

Network Layer 4-65

Subnets

 IP address:
subnet part - high order
bits

host part - low order
bits

what’s a subnet ?
device interfaces with
same subnet part of IP
address

can physically reach
each other without
intervening router network consisting of 3 subnets

223.1.1.1

223.1.1.3

223.1.1.4 223.1.2.9

223.1.3.2
223.1.3.1

subnet

223.1.1.2

223.1.3.27
223.1.2.2

223.1.2.1

Network Layer 4-66

IP addressing: CIDR

CIDR: Classless InterDomain Routing
 subnet portion of address of arbitrary length

 address format: a.b.c.d/x, where x is # bits in
subnet portion of address

11001000 00010111 00010000 00000000

subnet

part

host

part

200.23.16.0/23

Network Layer 4-67

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network
server when it joins network

 can renew its lease on address in use

 allows reuse of addresses (only hold address while
connected/“on”)

 support for mobile users who want to join network (more
shortly)

DHCP overview:
 host broadcasts “DHCP discover” msg [optional]

 DHCP server responds with “DHCP offer” msg [optional]

 host requests IP address: “DHCP request” msg

 DHCP server sends address: “DHCP ack” msg

Network Layer 4-68

motivation: local network uses just one IP address as far
as outside world is concerned:

 range of addresses not needed from ISP: just one
IP address for all devices

 can change addresses of devices in local network
without notifying outside world

 can change ISP without changing addresses of
devices in local network

 devices inside local net not explicitly addressable,
visible by outside world (a security plus)

NAT: network address translation

Network Layer 69

Traceroute and ICMP

 source sends series of
UDP segments to dest
 first set has TTL =1

 second set has TTL=2, etc.

 unlikely port number

 when nth set of datagrams
arrives to nth router:
 router discards datagrams

 and sends source ICMP
messages (type 11, code 0)

 ICMP messages includes
name of router & IP address

 when ICMP messages
arrives, source records
RTTs

stopping criteria:

 UDP segment eventually
arrives at destination host

 destination returns ICMP
“port unreachable”
message (type 3, code 3)

 source stops

3 probes

3 probes

3 probes

Network Layer 70

IPv6: motivation
 initial motivation: 32-bit address space soon to be

completely allocated.

 additional motivation:
 header format helps speed processing/forwarding

 header changes to facilitate QoS

IPv6 datagram format:
 fixed-length 40 byte header

 no fragmentation allowed

Network Layer 71

flow: X

src: A

dest: F

data

A-to-B:
IPv6

Flow: X

Src: A

Dest: F

data

src:B

dest: E

B-to-C:
IPv6 inside

IPv4

E-to-F:
IPv6

flow: X

src: A

dest: F

data

B-to-C:
IPv6 inside

IPv4

Flow: X

Src: A

Dest: F

data

src:B

dest: E

physical view:
A B

IPv6 IPv6

E

IPv6 IPv6

FC D

logical view:

IPv4 tunnel
connecting IPv6 routers E

IPv6 IPv6

FA B

IPv6 IPv6

Tunneling

IPv4 IPv4

Software Defined Networking (SDN)

API to the data plane

(e.g., OpenFlow)

Logically-centralized control

Switches

Smart,

slow

Dumb,

fast

Data-Plane: Simple Packet

Handling
 Simple packet-handling rules

 Pattern: match packet header bits

 Actions: drop, forward, modify, send to controller

 Priority: disambiguate overlapping patterns

 Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* drop
2. src = *.*.*.*, dest=3.4.*.* forward(2)
3. src=10.1.2.3, dest=*.*.*.* send to controller

Network Layer 74

A Link-State Routing Algorithm

Dijkstra’s algorithm
 net topology, link costs

known to all nodes
 accomplished via “link state

broadcast”
 all nodes have same info

 computes least cost paths
from one node (‘source”)
to all other nodes
 gives forwarding table for

that node

 iterative: after k
iterations, know least cost
path to k dest.’s

notation:
 c(x,y): link cost from

node x to y; = ∞ if not
direct neighbors

 D(v): current value of
cost of path from source
to dest. v

 p(v): predecessor node
along path from source to
v

 N': set of nodes whose
least cost path definitively
known

Network Layer 75

Distance vector algorithm

Bellman-Ford equation (dynamic programming)

let

dx(y) := cost of least-cost path from x to y

then

dx(y) = min {c(x,v) + dv(y) }
v

cost to neighbor v

min taken over all neighbors v of x

cost from neighbor v to destination y

Network Layer 4-76

Comparison of LS and DV algorithms

message complexity
 LS: with n nodes, E links, O(nE)

msgs sent

 DV: exchange between neighbors
only

 convergence time varies

speed of convergence
 LS: O(n2) algorithm requires

O(nE) msgs

 may have oscillations

 DV: convergence time varies

 may be routing loops

 count-to-infinity problem

robustness: what happens if
router malfunctions?

LS:
 node can advertise incorrect

link cost

 each node computes only its
own table

DV:
 DV node can advertise

incorrect path cost

 each node’s table used by
others

• error propagate thru

network

Network Layer 4-77

 aggregate routers into
regions, “autonomous
systems” (AS)

 routers in same AS
run same routing
protocol
 “intra-AS” routing

protocol

 routers in different AS
can run different intra-
AS routing protocol

gateway router:
 at “edge” of its own AS

 has link to router in
another AS

Hierarchical routing

Network Layer 4-78

Intra-AS Routing

 also known as interior gateway protocols (IGP)

 most common intra-AS routing protocols:

 RIP: Routing Information Protocol

 OSPF: Open Shortest Path First

 IGRP: Interior Gateway Routing Protocol
(Cisco proprietary)

Network Layer 4-79

Internet inter-AS routing: BGP

 BGP (Border Gateway Protocol): the de facto
inter-domain routing protocol
 “glue that holds the Internet together”

 BGP provides each AS a means to:

 eBGP: obtain subnet reachability information from
neighboring ASs.

 iBGP: propagate reachability information to all AS-
internal routers.

 determine “good” routes to other networks based on
reachability information and policy.

 allows subnet to advertise its existence to rest of
Internet: “I am here”

Network Layer 4-80

BGP routing policy

 A,B,C are provider networks

 X,W,Y are customer (of provider networks)

 X is dual-homed: attached to two networks

 X does not want to route from B via X to C

 .. so X will not advertise to B a route to C

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Network Layer 4-81

BGP routing policy (2)

 A advertises path AW to B

 B advertises path BAW to X

 Should B advertise path BAW to C?
 No way! B gets no “revenue” for routing CBAW since neither W nor

C are B’s customers

 B wants to force C to route to w via A

 B wants to route only to/from its customers!

A

B

C

W
X

Y

legend:

customer
network:

provider
network

Network Layer 4-82

Why different Intra-, Inter-AS routing ?

policy:
 inter-AS: admin wants control over how its traffic

routed, who routes through its net.

 intra-AS: single admin, so no policy decisions needed

scale:
 hierarchical routing saves table size, reduced update

traffic

performance:

 intra-AS: can focus on performance

 inter-AS: policy may dominate over performance

Network Layer 4-83

In-network duplication

 flooding: when node receives broadcast packet,
sends copy to all neighbors
 problems: cycles & broadcast storm

 controlled flooding: node only broadcasts pkt if it
hasn’t broadcast same packet before
 node keeps track of packet ids already broadacsted

 or reverse path forwarding (RPF): only forward packet
if it arrived on shortest path between node and source

 spanning tree:
 no redundant packets received by any node

Link Layer 5-84

Link layer services

 framing, link access:
 encapsulate datagram into frame, adding header, trailer
 channel access if shared medium
 “MAC” addresses used in frame headers to identify

source, dest

• different from IP address!

 reliable delivery between adjacent nodes
 we learned how to do this already (chapter 3)!
 seldom used on low bit-error link (fiber, some twisted

pair)
 Used in wireless links: high error rates

• Q: why both link-level and end-end reliability?

• A: Reduce the frequency of end-end retrx

85

Parity checking

single bit parity:
 detect single bit

errors

two-dimensional bit parity:
 detect and correct single bit errors

0 0

Link Layer 5-86

MAC protocols: taxonomy

three broad classes:

 channel partitioning
 divide channel into smaller “pieces” (time slots, frequency, code)

 allocate piece to node for exclusive use

 random access
 channel not divided, allow collisions

 “recover” from collisions

 “taking turns”
 nodes take turns, but nodes with more to send can take longer

turns

Link Layer 5-87

Summary of MAC protocols

 channel partitioning, by time, frequency or code
 Time Division, Frequency Division

 random access (dynamic),

 ALOHA, S-ALOHA, CSMA, CSMA/CD

 carrier sensing: easy in some technologies (wire), hard
in others (wireless)

 CSMA/CD used in Ethernet

 CSMA/CA used in 802.11

 taking turns

 polling from central site, token passing

 bluetooth

Link Layer 5-88

MAC addresses and ARP

 32-bit IP address:
 network-layer address for interface

 used for layer 3 (network layer) forwarding

 MAC (or LAN or physical or Ethernet) address:
 function: used ‘locally” to get frame from one interface to

another physically-connected interface (same network, in IP-
addressing sense)

 48 bit MAC address (for most LANs) burned in NIC
ROM, also sometimes software settable

 e.g.: 1A-2F-BB-76-09-AD

hexadecimal (base 16) notation

(each “number” represents 4 bits)

Link Layer 5-89

ARP: address resolution protocol

ARP table: each IP node (host,
router) on LAN has table

 IP/MAC address
mappings for some LAN
nodes:

< IP address; MAC address; TTL>

 TTL (Time To Live):
time after which address
mapping will be
forgotten (typically 20
min)

Question: how to determine

interface’s MAC address,

knowing its IP address?

1A-2F-BB-76-09-AD

58-23-D7-FA-20-B0

0C-C4-11-6F-E3-98

71-65-F7-2B-08-53

LAN

137.196.7.23

137.196.7.78

137.196.7.14

137.196.7.88

Link Layer 5-90

walkthrough: send datagram from A to B via R

 focus on addressing – at IP (datagram) and MAC layer (frame)

 assume A knows B’s IP address

 assume A knows IP address of first hop router, R (how?)

• DHCP

 assume A knows R’s MAC address (how?)

• ARP

Addressing: routing to another LAN

R

1A-23-F9-CD-06-9B
222.222.222.220

111.111.111.110
E6-E9-00-17-BB-4BCC-49-DE-D0-AB-7D

111.111.111.112

111.111.111.111

74-29-9C-E8-FF-55

A

222.222.222.222

49-BD-D2-C7-56-2A

222.222.222.221
88-B2-2F-54-1A-0F

B

Link Layer 5-91

Ethernet: physical topology

 bus: popular through mid 90s
 all nodes in same collision domain (can collide with each

other)

 star: prevails today
 active switch in center

 each “spoke” runs a (separate) Ethernet protocol (nodes

do not collide with each other)

switch

bus: coaxial cable
star

Link Layer 5-92

Ethernet: unreliable, connectionless

 connectionless: no handshaking between sending and
receiving NICs

 unreliable: receiving NIC doesnt send acks or nacks
to sending NIC

 data in dropped frames recovered only if initial
sender uses higher layer rdt (e.g., TCP), otherwise
dropped data lost

 Ethernet’s MAC protocol: unslotted CSMA/CD wth
binary backoff

Link Layer 5-93

Ethernet switch
 link-layer device: takes an active role

 store, forward Ethernet frames

 examine incoming frame’s MAC address,
selectively forward frame to one-or-more
outgoing links when frame is to be forwarded on
segment, uses CSMA/CD to access segment

 transparent

 hosts are unaware of presence of switches

 plug-and-play, self-learning

 switches do not need to be configured

Link Layer 5-94

Switch forwarding table

Q: how does switch know A’
reachable via interface 4, B’
reachable via interface 5?

switch with six interfaces

(1,2,3,4,5,6)

A

A’

B

B’ C

C’

1 2

345

6 A: each switch has a switch
table, each entry:

 (MAC address of host, interface

to reach host, time stamp)

 looks like a routing table!

Q: how are entries created,
maintained in switch table?

 something like a routing
protocol?

Link Layer 5-95

Switches vs. routers

both are store-and-forward:

 routers: network-layer
devices (examine network-
layer headers)

 switches: link-layer devices
(examine link-layer
headers)

both have forwarding tables:

 routers: compute tables
using routing algorithms, IP
addresses

 switches: learn forwarding
table using flooding,
learning, MAC addresses

application

transport

network

link

physical

network

link

physical

link

physical

switch

datagram

application

transport

network

link

physical

frame

frame

frame

datagram

Server racks

TOR switches

Tier-1 switches

Tier-2 switches

1 2 3 4 5 6 7 8

Data center networks

 rich interconnection among switches, racks:

 increased throughput between racks (multiple routing

paths possible)

 increased reliability via redundancy

