CMPE 150/L : Introduction to Computer Networks

Chen Qian
Computer Engineering
UCSC Baskin Engineering
Lecture 17
Final project demo

- You have 20 points for demo

- Please do the demo next week to the TAs.
- So basically you may need to finish all project functions by next week.

- Or you are allowed to use screenshots for demo. However the screenshots MUST be consistent to your program results, or you cannot get demo points.
Next lecture

- Final review of the course

- Summarize important knowledge points that will be covered in the final examination.
Course evaluation

- I will finish the lecture 15 mins earlier and you may use the time for course evaluation.
Summary of MAC protocols

- **channel partitioning**, by time, frequency or code
 - Time Division, Frequency Division
- **random access** (dynamic),
 - ALOHA, S-ALOHA, CSMA, CSMA/CD
 - carrier sensing: easy in some technologies (wire), hard in others (wireless)
 - CSMA/CD used in Ethernet
 - CSMA/CA used in 802.11
- **taking turns**
 - polling from central site, token passing
 - bluetooth
Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
5.5 data center networking
5.6 a day in the life of a web request
MAC addresses and ARP

- **32-bit IP address:**
 - *network-layer* address for interface
 - used for layer 3 (network layer) forwarding

- **MAC (or LAN or physical or Ethernet) address:**
 - function: *used ‘locally’ to get frame from one interface to another physically-connected interface (same network, in IP-addressing sense)*
 - 48 bit MAC address (for most LANs) burned in NIC ROM, also sometimes software settable
 - e.g.: 1A-2F-BB-76-09-AD
 - hexadecimal (base 16) notation
 - (each “number” represents 4 bits)
LAN addresses and ARP

each adapter on LAN has unique \textit{LAN} address

![LAN diagram with addresses](image)
LAN addresses (more)

- MAC address allocation administered by IEEE
- manufacturer buys portion of MAC address space (to assure uniqueness)
- analogy:
 - MAC address: like Social Security Number
 - IP address: like postal address
- MAC flat address \(\rightarrow\) portability
 - can move LAN card from one LAN to another
- IP hierarchical address *not* portable
 - address depends on IP subnet to which node is attached
ARP: address resolution protocol

Question: how to determine interface’s MAC address, knowing its IP address?

ARP table: each IP node (host, router) on LAN has table

- IP/MAC address mappings for some LAN nodes:
 `<IP address; MAC address; TTL>`

- TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min)
ARP protocol: same LAN

- A wants to send datagram to B
 - B’s MAC address not in A’s ARP table.
- A broadcasts ARP query packet, containing B's IP address
 - dest MAC address = FF-FF-FF-FF-FF-FF
 - all nodes on LAN receive ARP query
- B receives ARP packet, replies to A with its (B's) MAC address
 - frame sent to A’s MAC address (unicast)

- A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out)
 - soft state: information that times out (goes away) unless refreshed
Addressing: routing to another LAN

walkthrough: send datagram from A to B via R

- focus on addressing – at IP (datagram) and MAC layer (frame)
- assume A knows B’s IP address
- assume A knows IP address of first hop router, R (how?)
 - DHCP
- assume A knows R’s MAC address (how?)
 - ARP

![Network Diagram]

A
111.111.111.111
74-29-9C-E8-FF-55

111.111.111.112
CC-49-DE-D0-AB-7D

B
222.222.222.222
49-BD-D2-C7-56-2A

111.111.111.110
E6-E9-00-17-BB-4B

222.222.222.221
88-B2-2F-54-1A-0F
Addressing: routing to another LAN

- A creates IP datagram with IP source A, destination B
- A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram
Addressing: routing to another LAN

- frame sent from A to R
- frame received at R, datagram removed, passed up to IP
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
Addressing: routing to another LAN

- R forwards datagram with IP source A, destination B
- R creates link-layer frame with B's MAC address as dest, frame contains A-to-B IP datagram
Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
5.5 data center networking
5.6 a day in the life of a web request
Ethernet

“dominant” wired LAN technology:
- cheap $20 for NIC
- first widely used LAN technology
- simpler, cheaper than token LANs and ATM
- kept up with speed race: 10 Mbps – 10 Gbps

Metcalfe’s Ethernet sketch
Ethernet: physical topology

- **bus**: popular through mid 90s
 - all nodes in same collision domain (can collide with each other)

- **star**: prevails today
 - active *switch* in center
 - each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other)

![Diagram showing bus and star topologies](image.png)

bus: coaxial cable

star
sending adapter encapsulates IP datagram (or other network layer protocol packet) in **Ethernet frame**

<table>
<thead>
<tr>
<th>preamble</th>
<th>dest. address</th>
<th>source address</th>
<th>data (payload)</th>
<th>CRC</th>
<th>type</th>
</tr>
</thead>
</table>

preamble:
- 7 bytes with pattern 10101010 followed by one byte with pattern 10101011
- used to synchronize receiver, sender clock rates
Ethernet frame structure (more)

- **addresses**: 6 byte source, destination MAC addresses
 - if adapter receives frame with matching destination address, or with broadcast address (e.g. ARP packet), it passes data in frame to network layer protocol
 - otherwise, adapter discards frame

- **type**: indicates higher layer protocol (mostly IP but others possible, e.g., Novell IPX, AppleTalk)

- **CRC**: cyclic redundancy check at receiver
 - error detected: frame is dropped

<table>
<thead>
<tr>
<th>preamble</th>
<th>dest. address</th>
<th>source address</th>
<th>data (payload)</th>
<th>CRC</th>
</tr>
</thead>
</table>
| | | | | type

Link Layer 5-22
Ethernet: unreliable, connectionless

- **connectionless**: no handshaking between sending and receiving NICs
- **unreliable**: receiving NIC doesn't send acks or nacks to sending NIC
 - data in dropped frames recovered only if initial sender uses higher layer rdt (e.g., TCP), otherwise dropped data lost

- Ethernet’s MAC protocol: unslotted CSMA/CD with binary backoff
Ethernet switch

- link-layer device: takes an **active** role
 - store, forward Ethernet frames
 - examine incoming frame’s MAC address, **selectively** forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment

- **transparent**
 - hosts are unaware of presence of switches

- **plug-and-play, self-learning**
 - switches do not need to be configured
Switch: *multiple* simultaneous transmissions

- hosts have dedicated, direct connection to switch
- switches buffer packets
- Ethernet protocol used on *each* incoming link, but no collisions; full duplex
 - each link is its own collision domain
- *switching*: A-to-A’ and B-to-B’ can transmit simultaneously, without collisions

switch with six interfaces (1,2,3,4,5,6)
Switch forwarding table

Q: how does switch know A’ reachable via interface 4, B’ reachable via interface 5?

- **A:** each switch has a switch table, each entry:
 - (MAC address of host, interface to reach host, time stamp)
 - looks like a routing table!

Q: how are entries created, maintained in switch table?

- something like a routing protocol?

Diagram: switch with six interfaces (1,2,3,4,5,6)
Switch: self-learning

- switch *learns* which hosts can be reached through which interfaces
 - when frame received, switch "learns" location of sender: incoming LAN segment
 - records sender/location pair in switch table

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>60</td>
</tr>
</tbody>
</table>

Switch table (initially empty)
Switch: frame filtering/forwarding

when frame received at switch:

1. record incoming link, MAC address of sending host
2. index switch table using MAC destination address
3. if entry found for destination
 then {
 if destination on segment from which frame arrived
 then drop frame
 else forward frame on interface indicated by entry
 }
else flood /* forward on all interfaces except arriving interface */
Self-learning, forwarding: example

- Frame destination, A’, location unknown: flood
- Destination A location known: selectively send on just one link

<table>
<thead>
<tr>
<th>MAC addr</th>
<th>interface</th>
<th>TTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, A’</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>A</td>
<td>4</td>
<td>60</td>
</tr>
</tbody>
</table>

Switch table (initially empty)
Interconnecting switches

- switches can be connected together

Q: sending from A to G - how does S_1 know to forward frame destined to F via S_4 and S_3?

A: self learning! (works exactly the same as in single-switch case!)
Institutional network

to external network

router

mail server
web server

IP subnet
Switches vs. routers

Both are store-and-forward:
- **Routers**: network-layer devices (examine network-layer headers)
- **Switches**: link-layer devices (examine link-layer headers)

Both have forwarding tables:
- **Routers**: compute tables using routing algorithms, IP addresses
- **Switches**: learn forwarding table using flooding, learning, MAC addresses
Link layer, LANs: outline

5.1 introduction, services
5.2 error detection, correction
5.3 multiple access protocols
5.4 LANs
 - addressing, ARP
 - Ethernet
 - switches
5.6 data center networking
5.7 a day in the life of a web request
Data center networks

- 10’s to 100’s of thousands of hosts, often closely coupled, in close proximity:
 - e-business (e.g. Amazon)
 - content-servers (e.g., YouTube, Akamai, Apple, Microsoft)
 - search engines, data mining (e.g., Google)

- challenges:
 - multiple applications, each serving massive numbers of clients
 - managing/balancing load, avoiding processing, networking, data bottlenecks

Inside a 40-ft Microsoft container, Chicago data center
Data center networks

load balancer: application-layer routing
- receives external client requests
- directs workload within data center
- returns results to external client (hiding data center internals from client)

Internet

Border router

Access router

Load balancer

Tier-1 switches

Tier-2 switches

TOR switches

Server racks

1 2 3 4 5 6 7 8

A B C

Load balancer

Data center networks load balancer: application-layer routing
- receives external client requests
- directs workload within data center
- returns results to external client (hiding data center internals from client)
Data center networks

- rich interconnection among switches, racks:
 - increased throughput between racks (multiple routing paths possible)
 - increased reliability via redundancy
Next class

Finish Chapter 5 and final review