<u>CMPE 150/L : Introduction to</u> <u>Computer Networks</u>

> Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 13

No Lecture next Tuesday

No Lecture next Tuesday 2/28

Instructor gone for presentation on a conference.

Labs are still available

Midterm grade by 3/1

Grades uploaded to Canvas

You may go to any lab session 3/1-3/7 to view your exam papers, but you are not allowed to keep them

NAT: network address translation

NAT: network address translation

- I6-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument
 - NAT possibility must be taken into account by app designers, e.g., P2P applications
 - address shortage should instead be solved by IPv6

NAT traversal problem

- client wants to connect to server with address 10.0.0.1
 - server address 10.0.0.1 local to LAN (client can't use it as destination addr)
 - only one externally visible NATed address: 138.76.29.7
- solution I: statically configure NAT to forward incoming connection requests at given port to server
 - e.g., (123.76.29.7, port 2500) always forwarded to 10.0.0.1 port 25000

NAT traversal problem

- solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATed host to:
 - learn public IP address (138.76.29.7)
 - add/remove port mappings (with lease times)
 - i.e., automate static NAT port map configuration

NAT traversal problem

- solution 3: relaying (used in Skype)
 - NATed client establishes connection to relay
 - external client connects to relay
 - relay bridges packets between to connections

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Туре	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when *n*th set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP
 "port unreachable"
 message (type 3, code 3)
- source stops

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). next header: identify upper layer protocol for data

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

not all routers can be upgraded simultaneously

- no "flag days"
- how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

Interplay between routing, forwarding

Traditional Computer Networks

Forward, filter, buffer, mark, rate-limit, and measure packets

Traditional Computer Networks

Track topology changes, compute routes, install forwarding rules

Traditional Computer Networks

Collect measurements and configure the equipment

Software Defined Networking (SDN)

OpenFlow Networks

Data-Plane: Simple Packet Handling

• Simple packet-handling rules

- Pattern: match packet header bits
- Actions: drop, forward, modify, send to controller
- Priority: disambiguate overlapping patterns
- Counters: #bytes and #packets

- 1. src=1.2.*.*, dest=3.4.5.* → drop
- 2. src = *.*.*, dest=3.4.*.* → forward(2)
- 3. src=10.1.2.3, dest=*.*.* \rightarrow send to controller

Unifies Different Kinds of Boxes

Router

- Match: longest
 destination IP prefix
- Action: forward out a link
- Switch
 - Match: destination MAC address
 - Action: forward or flood

• Firewall

- Match: IP addresses and TCP/UDP port numbers
- Action: permit or deny
- NAT
 - Match: IP address and port
 - Action: rewrite address and port

E.g.: Dynamic Access Control

- Inspect first packet of a connection
- Consult the access control policy
- Install rules to block or route traffic

E.g.: Server Load Balancing

• Split traffic based on source IP

Routing: Graph abstraction

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

E = set of links ={ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) }

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms
 decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- * "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

Chapter 4: outline

- 4.1 introduction
- 4.2 virtual circuit and datagram networks
- 4.3 what's inside a router
- 4.4 IP: Internet Protocol
 - datagram format
 - IPv4 addressing
 - ICMP
 - IPv6

4.5 routing algorithms

- link state
- distance vector
- hierarchical routing
- 4.6 routing in the Internet
 - RIP
 - OSPF
 - BGP
- 4.7 broadcast and multicast routing

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k
 iterations, know least cost
 path to k dest.'s

notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u

```
5 then D(v) = c(u,v)
```

```
6 else D(v) = \infty
```

7

8 **Loop**

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N':
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Dijkstra's algorithm: example

		D(v)	D(w)	D(x)	D(y)	D(z)
Step	> N'	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	(3,u	5,u	∞	∞
1	uw	6,w		<u>(5,u</u>) 11,w	∞
2	uwx	6,w			11,W	14,x
3	UWXV				10,V	14,X
4	uwxvy					(12,y)
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

St	ер	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	8
	1	ux 🔶	2,u	4,x		2,x	∞
	2	uxy	<u>2,u</u>	З,у			4,y
	3	uxyv 🖌		3,y			4,y
	4	uxyvw 🔶					4,y
	5						

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

link		
(u,v)		
(u,x)		

Dijkstra's algorithm, discussion

algorithm complexity: n nodes

- each iteration: need to check all nodes, w, not in N
- n(n+1)/2 comparisons: O(n²)
- more efficient implementations possible: O(nlogn)

oscillations possible:

e.g., support link cost equals amount of carried traffic:

Please read Chapter 4.4-4.5 of your textbook BEFORE Class