CMPE 150/L : Introduction to
Computer Networks

Chen Qian
Computer Engineering
UCSC Baskin Engineering
Lecture 10

Midterm exam

Qd Midterm next Thursday

A Close book but one-side 8.5"x11" note is
allowed (must use hand-writing!)

A Let me know by next Monday if you have
any problem

ad Sample midterm and sample question of
Chapter 243

Chapter 3 outline

3.1 transport-layer 3.5 connection-oriented
services transport: TCP

3.2 multiplexing and " segment structure
demultiplexing = reliable data transfer

3.3 connectionless " flow control
transport: UDP " connection management

3.4 principles of reliable 3.6 principles of congestion
data transfer control

3.7 TCP congestion control

TCP fast retransmit

% time-out period often
relatively long:

" long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends
many segments back-
to-back

" if segment is lost, there
will likely be many

duplicate ACKs.

—- TCP fast retransmit ——

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don' t
wait for timeout

Transport Layer 4

TCP fast retransmit

Host A Host B
. / ' \
% V‘}/X

— Seq=92, 8 bytes of data

Seq= 100,7]‘0;'-&9:.@fd'a\ta.
\X

~ACK=100

timeout

/ACK:100
~Seq=100, 20 bytes of data

A A

v v

fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 5

Agreeing to establish a connection

2-way handshake:
Q: will 2-way handshake

fa

A always work in
)
- network!?
Let’ s talk .
T ESTAB < variable delays
OK :

ESTAB & % retransmitted messages
(e.g. req_conn(x)) due to
message loss

g E » message reordering
g ’ 1] ”” .
choose X |~ o 9 «» can t see other side
—® ESTAB
acc_conn(x)
ESTAB &

Transport Layer 6

Agreeing to establish a connection

2-way handshake failure scenarios:

:" V/

s

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L’

>,

X ESTAB

acc_conn(x)

req_conn(x)

\

_ connection
X completes

server
forgets x

ESTAB

half open connection!
(no client!)

&

N

choose x

retransmit
req_conn(x)

ESTAB

retransmit
data(x+1)

\req_conn(&

acc_conn(x)

" data (x+ 1)\..
N\

connection

1
client
terminates

~ 7 x completes ~

\
req_conn(x)

data(x+1)

X ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 7

TCP 3-way handshake

client state V./

.

\

LISTEN
choose init seq hum, x

send TCP SYN msg

SYNSENT
v received SYNACK(x)
ESTAB indicates server is live;

send ACK for SYNACK;

this segment may contain
client-to-server data

_—
T~

SYNbit=1, Seq=x

_—

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

ACKbit=1, ACKnum=y+1

\

choose init seq num, y
send TCP SYNACK

msg, acking SYN

received ACK(y)
indicates client is live

server state
LISTEN

SYN RCVD

v

ESTAB

Transport Layer 8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 9

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 10

Causes/costs of congestion: scenario |

original data: 7‘“in throughput: Kout
<+ two senders, two Y.
M A
receivers Host A 0
- one router, infinite | unlimited shared
buffers ;z | output link buffers
? P

+ output link capacity: R _7 ‘/_‘_\(/f_
R o))
< NO retransmission =it
- /

N

R/24-----mememe- . |
3 i g i
: Q :
= | © |
| i
Ay R/2 Ain R/2
% maximum per-connection ¢ large delays as arrival rate, A,
throughput: R/2 approaches capacity

Transport Layer 11

Causes/costs of congestion: scenario 2

% one router, finite buffers

+ sender retransmission of timed-out packet

= application-layer input = application-layer output: A;, =
}\“OU'[)
= transport-layer input includes retransmissions : A, > A,

A : original data |
in- Orng pom DY

A'.: original data, plus
retransmitted data

— S mm

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 12

Host B

Causes/costs of congestion: scenario 2

e R24--mmoe .
idealization: perfect ;
knowledge E |
+ sender sends only when ~ |
router buffers available i

B)\, : original data

copy.

out

A'.: original data, plus
retransmitted data

free buffer space! H
>

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 13

Host B

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

B — A, original data

copy | = A'.: original data, plus

retransmitted data

no buffer space!
DS e %

~HENARNR

i

Host B

Transport Layer 14

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if

}\’OU'[

(=Y S —

when sending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

packet known to be lost

A, : original data

A’ original data, plus
retransmitted data

free buffer space!
» 1]

~HENARNR

R/2

Transport Layer 15

Causes/costs of congestion: scenario 2

Realistic: duplicates

RJ2 f-mmmmmmmmmmmmmmmmmooe oo
+ packets can be lost, dropped
at router due to full buffers when sending at R/2,
. E some pagkgts are
+ sender times out prematurely, < retransmissions

sending two copies, both of
which are delivered

R/2

including duplicated
that are delivered!

. in
fp,, N
.(S; {’5)) 7\/
=i in ‘
timeout = |l 2\ A<_‘_kout
In

free buffer space!
5 mvm 4

SSSS= “RIEREER

Transport Layer 16

% Throughput: +» Goodput:

= Data rate at the = Rate at the receiver for
receiver data without duplicate!

Transport Layer 17

Causes/costs of congestion: scenario 2

Realistic: duplicates

=] S —
+ packets can be lost, dropped A
at router due to full buffers ~ i whensending at R/,
. 5 | some pagkgts are
+ sender times out prematurely, < | retrlag_smlzswlnst]
. . ! including duplicate
Sen.dmg two C?PIeS’ bOth Of that are delivered!
which are delivered % R

in

“costs’ of congestion:

» more work (retrans) for given “goodput”

+ unneeded retransmissions: link carries multiple copies of pkt
" decreasing goodput

Transport Layer 18

Causes/costs of congestion: scenario 3

Q: what happens as . and A
increase !
A:asred), increases,all arriving

blue pkts at upper queue are
dropped, blue throughput = 0

< four senders
< multihop paths
< timeout/retransmit

Host A

L A
A, : original data Out. Host B

A': original data, plus
retransmitted data

finite shared output
[

k buffers ‘ H

Host D

Transport Layer 19

Causes/costs of congestion: scenario 3

C/2

7‘“out
>

13 7 .
another "cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 20

AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
<+ congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<+ approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 21

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 22

TCP Congestion Control: details

sender sequence number space

— cwnd —s| TCP sending rate:
"l""" """ < roughly: send cwnd
bytes, wait RTT for
Jast byte t\ L lastbyte ACKS, then send
Acked e ACkea =M more bytes
ot/
1(’Iig|]ht”)
+ sender limits transmission: rate w bytes/sec
LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

Transport Layer 23

TCP Slow Start

+» when connection begins, ™ E
InCcrease rate

exponentially until first é T —Sfesegmen
o
¢

loss event:
" initially cwnd = | MSS ﬂ
" double cwnd every RTT \

= done by incrementing
cwnd for every ACK Ur segments

received
% summary: initial rate is
slow but ramps up
exponentially fast tirlne

Transport Layer 24

TCP: detecting, reacting to loss

%+ loss indicated by timeout:
" set a threshold ssthresh to half of the cwnd,;
* cwnd set to | MSS (by both TCP Tahoe and Reno);

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

% TCP RENO: loss indicated by 3 duplicate ACKs

* dup ACKs indicate network capable of delivering
some segments

= cwnd is cut in half window then grows linearly

Transport Layer 25

After cwnd reaching the threshold

+ Congestion avoidance algorithm:

% Additive increase multiplicative decrease
(AIMD)

Transport Layer 3-26

TCP congestion control: AIMD

% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

time
Transport Layer 27

TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to 4 TCP Reno
linear? 127

A: when cwnd gets
to |/2 of its value
before timeout.

o
|

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

Implementation: R S S A R s A A A A
+ variable ssthresh Transmission round

<+ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

Transport Layer 28

S

U

duplicate ACK
dupACKcount++

()

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

mmary: TCP Congestion Control

new ACH “ZA 0N
cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount =0
transmit new segment(s), as allowed

new ACK
cwnd = cwnd+MSS
dupACKcount=0

_________________ A R
S — -
‘9 >) timeout
"\ <))'ssthresh = cwnd/2 _
o </ owng =1 MSS duplicate ACK
&) timeout dupACKcount = 0 dupACKcount++
% ssthresh = cwnd/2 A retransmit missing segment A
cwnd = 1 MSS
dupACKcount =0 TN n
retransmit missing segment ((: AT
timeout'\% %))
ssthresh = cwnd/2 AN
cwnd = 1 New ACK
dupACKcount =0 cwnd = ssthresh g
== it missi - ACKcount ==
dupACKcount == retransmit missing segment dupACKcount = 0 up u
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 29

TCP throughput

+ avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window size (measured in bytesy Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W
" avg. thruput is 3/4W per RTT

W/2 —

avg TCP thruput = 3

/

/

4

/

W
RTT bytes/sec

/

/

/

Transport Layer 30

TCP Futures: TCP over “long, fat pipes”

00

example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997];

000

000

TCP throughput = =:22-MSS

RTT./L

=» to achieve |10 Gbps throughput, need a loss rate of L
=2'10"'9 — a very small loss rate!

» new versions of TCP for high-speed

&

Transport Layer 31

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

N/ bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 32

Why is TCP fair?

two competing sessions:
<+ additive increase gives slope of |, as throughout increases
<+ multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 0

Connection 1 throughput R

Transport Layer 33

Van Jacobson

% One of the key designers of TCP congestion control

< 1:40-9:20

34

https://www.youtube.com/watch?v=QP4A6L7CEqA

Fairness gmorez

Fairness and UDP Fairness, parallel TCP
» multimedia apps often connections
do not use TCP + application can open
" do not want rate multiple parallel
throttled by congestion connections between two

control

< instead use UDP:

* send audio/video at . .
constant rate, tolerate < €.g., link of rate R with 9

hosts
< web browsers do this

packet loss existing connections:
" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 35

Chapter 3: summary

< principles behind
transport layer services:
= multiplexing,
demultiplexing
" reliable data transfer
= flow control
" congestion control

« instantiation,
implementation in the
Internet
= UDP
= TCP

next:

<+ leaving the
network “edge”
(application,
transport layers)

% into the network
“core”

Transport Layer 36

Next class

«» Midterm covers every slide until here.

% Please read Chapter 4.1-4.2 of your textbook
BEFORE Class

37

