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Midterm exam 

Midterm next Thursday 

 

 Close book but one-side 8.5"x11" note is 
allowed (must use hand-writing!) 

 

 Let me know by next Monday if you have 
any problem 

 

Sample midterm and sample question of 
Chapter 2&3 
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Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 
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TCP fast retransmit 

 time-out period  often 
relatively long: 
 long delay before 

resending lost packet 

 detect lost segments 
via duplicate ACKs. 
 sender often sends 

many segments back-
to-back 

 if segment is lost, there 
will likely be many 
duplicate ACKs. 

 

 

if sender receives 3 
ACKs for same data 

(“triple duplicate ACKs”), 
resend unacked 
segment with smallest 
seq # 
 likely that unacked 

segment lost, so don’t 
wait for timeout 

TCP fast retransmit 

(“triple duplicate ACKs”),  
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X 

fast retransmit after sender  
receipt of triple duplicate ACK 

Host B Host A 

Seq=92, 8 bytes of data 

ACK=100 

ti
m

e
o
u
t 

ACK=100 

ACK=100 

ACK=100 

TCP fast retransmit 

Seq=100, 20 bytes of data 

Seq=100, 20 bytes of data 
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Q: will 2-way handshake 
always work in 
network? 

 variable delays 

 retransmitted messages 
(e.g. req_conn(x)) due to 
message loss 

 message reordering 

 can’t “see” other side 

2-way handshake: 

Let’s talk 

OK 
ESTAB 

ESTAB 

choose x 
 

req_conn(x) 

ESTAB 

ESTAB 
acc_conn(x) 

Agreeing to establish a connection 
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Agreeing to establish a connection 

2-way handshake failure scenarios: 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

half open connection! 
(no client!) 

client 
terminates 

server 
forgets x 

connection  
x completes 

retransmit 
req_conn(x) 

 

ESTAB 

req_conn(x) 

data(x+1) 

retransmit 
data(x+1) 

 

accept 
data(x+1) 

choose x 
 req_conn(x) 

ESTAB 

ESTAB 

acc_conn(x) 

client 
terminates 

ESTAB 

choose x 
 req_conn(x) 

ESTAB 

acc_conn(x) 

data(x+1) accept 
data(x+1) 

connection  
x completes server 

forgets x 
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TCP 3-way handshake 

SYNbit=1, Seq=x 

choose init seq num, x 
send TCP SYN msg 

ESTAB 

SYNbit=1, Seq=y 
ACKbit=1; ACKnum=x+1 

choose init seq num, y 
send TCP SYNACK 
msg, acking SYN 

ACKbit=1, ACKnum=y+1 

received SYNACK(x)  
indicates server is live; 
send ACK for SYNACK; 

this segment may contain  
client-to-server data 

received ACK(y)  
indicates client is live 

SYNSENT 

ESTAB 

SYN RCVD 

client state 
 

LISTEN 

server state 
 

LISTEN 
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Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 
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congestion: 
 informally: “too many sources sending too much 

data too fast for network to handle” 

 different from flow control! 

 manifestations: 

 lost packets (buffer overflow at routers) 

 long delays (queueing in router buffers) 

 a top-10 problem! 
 

Principles of congestion control 
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Causes/costs of congestion: scenario 1  

 two senders, two 
receivers 

 one router, infinite 
buffers  

 output link capacity: R 

 no retransmission 

 

 maximum per-connection 
throughput: R/2 

unlimited shared 

output link buffers 

Host A 

original data: lin  

Host B 

throughput: lout 

R/2 

R/2 

l
o
u
t 

lin R/2 
d
e
la

y
 

lin 

 large delays as arrival rate, lin, 
approaches capacity 
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 one router, finite buffers  

 sender retransmission of timed-out packet 
 application-layer input = application-layer output: lin = 

lout 

 transport-layer input includes retransmissions : lin    lin 

 

 

 

finite shared output 

link buffers 

Host A 

lin : original data 

Host B 

lout l'in: original data, plus 

retransmitted data 

‘ 

Causes/costs of congestion: scenario 2  
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idealization: perfect 
knowledge 

 sender sends only when 
router buffers available  

 

 

finite shared output 

link buffers 

lin : original data 
lout l'in: original data, plus 

retransmitted data 

copy 

free buffer space! 

R/2 

R/2 

l
o
u
t 

lin 

Causes/costs of congestion: scenario 2  

Host B 

A 
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lin : original data 
lout l'in: original data, plus 

retransmitted data 

copy 

no buffer space! 

Idealization: known loss 
packets can be lost, 
dropped at router due  
to full buffers 

 sender only resends if 
packet known to be lost 

 

 

 

Causes/costs of congestion: scenario 2  

A 

Host B 
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lin : original data 
lout l'in: original data, plus 

retransmitted data 

free buffer space! 

Causes/costs of congestion: scenario 2  

Idealization: known loss 
packets can be lost, 
dropped at router due  
to full buffers 

 sender only resends if 
packet known to be lost 

 

 

 

R/2 

R/2 lin 

l
o
u
t 

when sending at R/2, 

some packets are 

retransmissions but 

asymptotic goodput 

is still R/2 (why?) 

A 

Host B 
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A 

lin 
lout l'in 

copy 

free buffer space! 

timeout 

R/2 

R/2 lin 

l
o
u
t 

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered! 

Host B 

Realistic: duplicates  
 packets can be lost, dropped 

at router due  to full buffers 

 sender times out prematurely, 
sending two copies, both of 
which are delivered 

 

Causes/costs of congestion: scenario 2  



 Throughput: 
 Data rate at the 

receiver 

 Goodput: 
 Rate at the receiver for 

data without duplicate! 

Transport Layer   17 
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R/2 

l
o
u
t 

when sending at R/2, 

some packets are 

retransmissions 

including duplicated 

that are delivered! 

“costs” of congestion:  
 more work (retrans) for given “goodput” 

 unneeded retransmissions: link carries multiple copies of pkt 

 decreasing goodput 

 

R/2 lin 

Causes/costs of congestion: scenario 2  
Realistic: duplicates  
 packets can be lost, dropped 

at router due  to full buffers 

 sender times out prematurely, 
sending two copies, both of 
which are delivered 
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 four senders 

 multihop paths 

 timeout/retransmit 

 

Q: what happens as lin and lin
’ 

increase ? 

finite shared output 

link buffers 

Host A lout 

Causes/costs of congestion: scenario 3  

Host B 

Host C 

Host D 

lin : original data 

l'in: original data, plus 

retransmitted data 

A: as red  lin
’ increases, all arriving 

blue pkts at upper queue are 
dropped, blue throughput g 0 
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another “cost” of congestion:  

 when packet dropped, any “upstream 
transmission capacity used for that packet was 
wasted! 

Causes/costs of congestion: scenario 3  

C/2 

C/2 

l
o
u
t 

lin
’ 
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Approaches towards congestion control 

two broad approaches towards congestion control: 

end-end congestion 
control: 

 no explicit feedback 
from network 

 congestion inferred 
from end-system 
observed loss, delay 

 approach taken by 
TCP 

network-assisted 
congestion control: 

 routers provide 
feedback to end systems 

 single bit indicating 
congestion (SNA, 
DECbit, TCP/IP ECN, 
ATM) 

explicit rate for 
sender to send at 
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Chapter 3 outline 

3.1 transport-layer 
services 

3.2 multiplexing and 
demultiplexing 

3.3 connectionless 
transport: UDP 

3.4 principles of reliable 
data transfer 

3.5 connection-oriented 
transport: TCP 
 segment structure 

 reliable data transfer 

 flow control 

 connection management 

3.6 principles of congestion 
control 

3.7 TCP congestion control 
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TCP Congestion Control: details 

 sender limits transmission: 

 

 

 cwnd is dynamic, function 
of perceived network 
congestion 

 

TCP sending rate: 

 roughly: send cwnd 
bytes, wait RTT for 
ACKS, then send 
more bytes 

last byte 
ACKed sent, not-

yet ACKed 
(“in-
flight”) 

last byte 
sent 

cwnd 

LastByteSent- 

 LastByteAcked 
< cwnd 

sender sequence number space  

rate ~ ~ 
cwnd 

RTT 
bytes/sec 
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TCP Slow Start  

 when connection begins, 
increase rate 
exponentially until first 
loss event: 
 initially cwnd = 1 MSS 

 double cwnd every RTT 

 done by incrementing 
cwnd for every ACK 
received 

 summary: initial rate is 
slow but ramps up 
exponentially fast 

Host A 

R
T

T
 

Host B 

time 
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TCP: detecting, reacting to loss 

 loss indicated by timeout: 
 set a threshold ssthresh to half of the cwnd;  

 cwnd set to 1 MSS (by both TCP Tahoe and Reno);  

window then grows exponentially (as in slow start) 
to threshold, then grows linearly 

 TCP Tahoe always sets cwnd to 1 (timeout or 3 
duplicate acks) 

 TCP RENO: loss indicated by 3 duplicate ACKs 
 dup ACKs indicate network capable of  delivering 

some segments  

 cwnd is cut in half window then grows linearly 

 



After cwnd reaching the threshold 

 Congestion avoidance algorithm:  

 

 Additive increase multiplicative decrease 
(AIMD) 

Transport Layer 3-26 
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TCP congestion control: AIMD  

 approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs 

 additive increase: increase  cwnd by 1 MSS every 
RTT until loss detected 

multiplicative decrease: cut cwnd in half after loss  

 

c
w
n
d
:

 T
C

P
 s

e
n
d

e
r 

 

c
o

n
g

e
s
ti
o
n
 w

in
d

o
w

 s
iz

e
 

AIMD saw tooth 

behavior: probing 

for bandwidth 

additively increase window size … 
…. until loss occurs (then cut window in half) 

time 
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Q: when should the 
exponential 
increase switch to 
linear?  

A: when cwnd gets 
to 1/2 of its value 
before timeout. 

 

  Implementation: 
 variable ssthresh  

 on loss event, ssthresh 
is set to 1/2 of cwnd just 
before loss event 

TCP: switching from slow start to CA 
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Summary: TCP Congestion Control 

timeout 

ssthresh = cwnd/2 
cwnd = 1 MSS 

dupACKcount = 0 

retransmit missing segment  

L 

cwnd > ssthresh 

congestion 

avoidance  

 

cwnd = cwnd + MSS    (MSS/cwnd) 
dupACKcount = 0 

transmit new segment(s), as allowed 
 

new ACK 
. 

dupACKcount++ 
 

duplicate ACK 

  

 

fast 

recovery  

 

cwnd = cwnd + MSS 
transmit new segment(s), as allowed 
 

duplicate ACK 

ssthresh= cwnd/2 
cwnd = ssthresh + 3 

retransmit missing segment 
 

dupACKcount == 3 

timeout 

ssthresh = cwnd/2 
cwnd = 1  
dupACKcount = 0 

retransmit missing segment  

ssthresh= cwnd/2 
cwnd = ssthresh + 3 
retransmit missing segment 
 

dupACKcount == 3 cwnd = ssthresh 
dupACKcount = 0 

 
 

New ACK 

slow  

start 

timeout 

ssthresh = cwnd/2  
cwnd = 1 MSS 

dupACKcount = 0 
retransmit missing segment  

cwnd = cwnd+MSS 
dupACKcount = 0 
transmit new segment(s), as allowed 
 

new ACK dupACKcount++ 
 

duplicate ACK 

L 

cwnd = 1 MSS 
ssthresh = 64 KB 
dupACKcount = 0 

New 
ACK! 

New 
ACK! 

New 
ACK! 
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TCP throughput 

 avg. TCP thruput as function of window size, RTT? 
 ignore slow start, assume always data to send 

 W: window size (measured in bytes) where loss occurs 
 avg. window size (# in-flight bytes) is ¾ W 

 avg. thruput is 3/4W per RTT 

W 

W/2 

avg TCP thruput =  
3 
4 

W 
RTT 

bytes/sec 
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TCP Futures: TCP over “long, fat pipes” 

 example: 1500 byte segments, 100ms RTT, want 
10 Gbps throughput 

 requires W = 83,333 in-flight segments 

 throughput in terms of segment loss probability, L 
[Mathis 1997]: 

 
 
 

➜ to achieve 10 Gbps throughput, need a loss rate of L 
= 2·10-10   – a very small loss rate! 

 new versions of TCP for high-speed 

 

TCP throughput =  
1.22 . MSS 

RTT L 
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fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K 

TCP connection 1 

bottleneck 

router 

capacity R 

TCP Fairness 

TCP connection 2 
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Why is TCP fair? 

two competing sessions: 
 additive increase gives slope of 1, as throughout increases 

 multiplicative decrease decreases throughput proportionally  

R 

R 

equal bandwidth share 

Connection 1 throughput 

congestion avoidance: additive increase 

loss: decrease window by factor of 2 

congestion avoidance: additive increase 
loss: decrease window by factor of 2 



Van Jacobson 

 One of the key designers of TCP congestion control 

 https://www.youtube.com/watch?v=QP4A6L7CEqA 

 1:40-9:20 
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https://www.youtube.com/watch?v=QP4A6L7CEqA
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Fairness (more) 

Fairness and UDP 

 multimedia apps often 
do not use TCP 
 do not want rate 

throttled by congestion 
control 

 instead use UDP: 
 send audio/video at 

constant rate, tolerate 
packet loss 

 

Fairness, parallel TCP 
connections 

 application can open 
multiple parallel 
connections between two 
hosts 

 web browsers do this  

 e.g., link of rate R with 9 
existing connections: 
 new app asks for 1 TCP, gets rate 

R/10 

 new app asks for 11 TCPs, gets R/2  
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Chapter 3: summary 

 principles behind 
transport layer services: 

multiplexing, 
demultiplexing 

 reliable data transfer 

 flow control 

 congestion control 

 instantiation, 
implementation in the 
Internet 
 UDP 

 TCP 

next: 

 leaving the 
network “edge” 
(application, 
transport layers) 

 into the network 
“core” 

 



Next class 

 

 Midterm covers every slide until here.  

 

 Please read Chapter 4.1-4.2 of your textbook 
BEFORE Class 
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