
CMPE 150/L : Introduction to
Computer Networks

Chen Qian

Computer Engineering

UCSC Baskin Engineering

Lecture 10

1

Midterm exam

Midterm next Thursday

 Close book but one-side 8.5"x11" note is
allowed (must use hand-writing!)

 Let me know by next Monday if you have
any problem

Sample midterm and sample question of
Chapter 2&3

2

3

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 4

TCP fast retransmit

 time-out period often
relatively long:
 long delay before

resending lost packet

 detect lost segments
via duplicate ACKs.
 sender often sends

many segments back-
to-back

 if segment is lost, there
will likely be many
duplicate ACKs.

if sender receives 3
ACKs for same data

(“triple duplicate ACKs”),
resend unacked
segment with smallest
seq #
 likely that unacked

segment lost, so don’t
wait for timeout

TCP fast retransmit

(“triple duplicate ACKs”),

Transport Layer 5

X

fast retransmit after sender
receipt of triple duplicate ACK

Host B Host A

Seq=92, 8 bytes of data

ACK=100

ti
m

e
o
u
t

ACK=100

ACK=100

ACK=100

TCP fast retransmit

Seq=100, 20 bytes of data

Seq=100, 20 bytes of data

Transport Layer 6

Q: will 2-way handshake
always work in
network?

 variable delays

 retransmitted messages
(e.g. req_conn(x)) due to
message loss

 message reordering

 can’t “see” other side

2-way handshake:

Let’s talk

OK
ESTAB

ESTAB

choose x

req_conn(x)

ESTAB

ESTAB
acc_conn(x)

Agreeing to establish a connection

Transport Layer 7

Agreeing to establish a connection

2-way handshake failure scenarios:

retransmit
req_conn(x)

ESTAB

req_conn(x)

half open connection!
(no client!)

client
terminates

server
forgets x

connection
x completes

retransmit
req_conn(x)

ESTAB

req_conn(x)

data(x+1)

retransmit
data(x+1)

accept
data(x+1)

choose x
 req_conn(x)

ESTAB

ESTAB

acc_conn(x)

client
terminates

ESTAB

choose x
 req_conn(x)

ESTAB

acc_conn(x)

data(x+1) accept
data(x+1)

connection
x completes server

forgets x

Transport Layer 8

TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain
client-to-server data

received ACK(y)
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN

Transport Layer 9

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 10

congestion:
 informally: “too many sources sending too much

data too fast for network to handle”

 different from flow control!

 manifestations:

 lost packets (buffer overflow at routers)

 long delays (queueing in router buffers)

 a top-10 problem!

Principles of congestion control

Transport Layer 11

Causes/costs of congestion: scenario 1

 two senders, two
receivers

 one router, infinite
buffers

 output link capacity: R

 no retransmission

 maximum per-connection
throughput: R/2

unlimited shared

output link buffers

Host A

original data: lin

Host B

throughput: lout

R/2

R/2

l
o
u
t

lin R/2
d
e
la

y

lin

 large delays as arrival rate, lin,
approaches capacity

Transport Layer 12

 one router, finite buffers

 sender retransmission of timed-out packet
 application-layer input = application-layer output: lin =

lout

 transport-layer input includes retransmissions : lin lin

finite shared output

link buffers

Host A

lin : original data

Host B

lout l'in: original data, plus

retransmitted data

‘

Causes/costs of congestion: scenario 2

Transport Layer 13

idealization: perfect
knowledge

 sender sends only when
router buffers available

finite shared output

link buffers

lin : original data
lout l'in: original data, plus

retransmitted data

copy

free buffer space!

R/2

R/2

l
o
u
t

lin

Causes/costs of congestion: scenario 2

Host B

A

Transport Layer 14

lin : original data
lout l'in: original data, plus

retransmitted data

copy

no buffer space!

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

 sender only resends if
packet known to be lost

Causes/costs of congestion: scenario 2

A

Host B

Transport Layer 15

lin : original data
lout l'in: original data, plus

retransmitted data

free buffer space!

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

 sender only resends if
packet known to be lost

R/2

R/2 lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions but

asymptotic goodput

is still R/2 (why?)

A

Host B

Transport Layer 16

A

lin
lout l'in

copy

free buffer space!

timeout

R/2

R/2 lin

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

Host B

Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Causes/costs of congestion: scenario 2

 Throughput:
 Data rate at the

receiver

 Goodput:
 Rate at the receiver for

data without duplicate!

Transport Layer 17

Transport Layer 18

R/2

l
o
u
t

when sending at R/2,

some packets are

retransmissions

including duplicated

that are delivered!

“costs” of congestion:
 more work (retrans) for given “goodput”

 unneeded retransmissions: link carries multiple copies of pkt

 decreasing goodput

R/2 lin

Causes/costs of congestion: scenario 2
Realistic: duplicates
 packets can be lost, dropped

at router due to full buffers

 sender times out prematurely,
sending two copies, both of
which are delivered

Transport Layer 19

 four senders

 multihop paths

 timeout/retransmit

Q: what happens as lin and lin
’

increase ?

finite shared output

link buffers

Host A lout

Causes/costs of congestion: scenario 3

Host B

Host C

Host D

lin : original data

l'in: original data, plus

retransmitted data

A: as red lin
’ increases, all arriving

blue pkts at upper queue are
dropped, blue throughput g 0

Transport Layer 20

another “cost” of congestion:

 when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Causes/costs of congestion: scenario 3

C/2

C/2

l
o
u
t

lin
’

Transport Layer 21

Approaches towards congestion control

two broad approaches towards congestion control:

end-end congestion
control:

 no explicit feedback
from network

 congestion inferred
from end-system
observed loss, delay

 approach taken by
TCP

network-assisted
congestion control:

 routers provide
feedback to end systems

 single bit indicating
congestion (SNA,
DECbit, TCP/IP ECN,
ATM)

explicit rate for
sender to send at

Transport Layer 22

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 23

TCP Congestion Control: details

 sender limits transmission:

 cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

 roughly: send cwnd
bytes, wait RTT for
ACKS, then send
more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-
flight”)

last byte
sent

cwnd

LastByteSent-

 LastByteAcked
< cwnd

sender sequence number space

rate ~ ~
cwnd

RTT
bytes/sec

Transport Layer 24

TCP Slow Start

 when connection begins,
increase rate
exponentially until first
loss event:
 initially cwnd = 1 MSS

 double cwnd every RTT

 done by incrementing
cwnd for every ACK
received

 summary: initial rate is
slow but ramps up
exponentially fast

Host A

R
T

T

Host B

time

Transport Layer 25

TCP: detecting, reacting to loss

 loss indicated by timeout:
 set a threshold ssthresh to half of the cwnd;

 cwnd set to 1 MSS (by both TCP Tahoe and Reno);

window then grows exponentially (as in slow start)
to threshold, then grows linearly

 TCP Tahoe always sets cwnd to 1 (timeout or 3
duplicate acks)

 TCP RENO: loss indicated by 3 duplicate ACKs
 dup ACKs indicate network capable of delivering

some segments

 cwnd is cut in half window then grows linearly

After cwnd reaching the threshold

 Congestion avoidance algorithm:

 Additive increase multiplicative decrease
(AIMD)

Transport Layer 3-26

Transport Layer 27

TCP congestion control: AIMD

 approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

 additive increase: increase cwnd by 1 MSS every
RTT until loss detected

multiplicative decrease: cut cwnd in half after loss

c
w
n
d
:

 T
C

P
 s

e
n
d

e
r

c
o

n
g

e
s
ti
o
n
 w

in
d

o
w

 s
iz

e

AIMD saw tooth

behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time

Transport Layer 28

Q: when should the
exponential
increase switch to
linear?

A: when cwnd gets
to 1/2 of its value
before timeout.

 Implementation:
 variable ssthresh

 on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

TCP: switching from slow start to CA

Transport Layer 29

Summary: TCP Congestion Control

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0

retransmit missing segment

L

cwnd > ssthresh

congestion

avoidance

cwnd = cwnd + MSS (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK
.

dupACKcount++

duplicate ACK

fast

recovery

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout

ssthresh = cwnd/2
cwnd = 1
dupACKcount = 0

retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3 cwnd = ssthresh
dupACKcount = 0

New ACK

slow

start

timeout

ssthresh = cwnd/2
cwnd = 1 MSS

dupACKcount = 0
retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACK dupACKcount++

duplicate ACK

L

cwnd = 1 MSS
ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!

Transport Layer 30

TCP throughput

 avg. TCP thruput as function of window size, RTT?
 ignore slow start, assume always data to send

 W: window size (measured in bytes) where loss occurs
 avg. window size (# in-flight bytes) is ¾ W

 avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput =
3
4

W
RTT

bytes/sec

Transport Layer 31

TCP Futures: TCP over “long, fat pipes”

 example: 1500 byte segments, 100ms RTT, want
10 Gbps throughput

 requires W = 83,333 in-flight segments

 throughput in terms of segment loss probability, L
[Mathis 1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L
= 2·10-10 – a very small loss rate!

 new versions of TCP for high-speed

TCP throughput =
1.22 . MSS

RTT L

Transport Layer 32

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

bottleneck

router

capacity R

TCP Fairness

TCP connection 2

Transport Layer 33

Why is TCP fair?

two competing sessions:
 additive increase gives slope of 1, as throughout increases

 multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Van Jacobson

 One of the key designers of TCP congestion control

 https://www.youtube.com/watch?v=QP4A6L7CEqA

 1:40-9:20

34

https://www.youtube.com/watch?v=QP4A6L7CEqA

Transport Layer 35

Fairness (more)

Fairness and UDP

 multimedia apps often
do not use TCP
 do not want rate

throttled by congestion
control

 instead use UDP:
 send audio/video at

constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

 application can open
multiple parallel
connections between two
hosts

 web browsers do this

 e.g., link of rate R with 9
existing connections:
 new app asks for 1 TCP, gets rate

R/10

 new app asks for 11 TCPs, gets R/2

Transport Layer 36

Chapter 3: summary

 principles behind
transport layer services:

multiplexing,
demultiplexing

 reliable data transfer

 flow control

 congestion control

 instantiation,
implementation in the
Internet
 UDP

 TCP

next:

 leaving the
network “edge”
(application,
transport layers)

 into the network
“core”

Next class

 Midterm covers every slide until here.

 Please read Chapter 4.1-4.2 of your textbook
BEFORE Class

37

