
CMPE 150/L : Introduction to
Computer Networks

Chen Qian

Computer Engineering

UCSC Baskin Engineering

Lecture 7

1

Homework questions

Available on course website

 Please work on them, but do not submit
your answers. The answers will be posted
later.

2

3

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

4

Transport services and protocols

 provide logical communication
between app processes
running on different hosts

 transport protocols run in
end systems

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

5

Transport vs. network layer

 network layer: logical
communication
between hosts

 transport layer:
logical
communication
between processes
 relies on, enhances,

network layer
services

3 kids in Ann’s house sending
letters to 3 kids in Bill’s house:

 hosts = houses
 processes = kids
 app messages = letters in

envelopes
 transport protocol = Ann

and Bill who demux to in-
house siblings

 network-layer protocol =
postal service

household analogy:

 Ann’s home
 Ann

 Alice

 Amy

 Home address:
 123, Santa Cruz

 Bill’s home
 Bill

 Bob

 Brent

 Home address：
 456, Scotts Valley

6

7

Internet transport-layer protocols

 reliable, in-order
delivery (TCP)
 congestion control

 flow control

 connection setup

 unreliable, unordered
delivery: UDP
 no-frills extension of
“best-effort” IP

 services not available:
 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

8

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

9

Multiplexing/demultiplexing

process

socket

use header info to deliver
received segments to correct
socket

demultiplexing at receiver:handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing at sender:

transport

application

physical

link

network

P2P1

transport

application

physical

link

network

P4

transport

application

physical

link

network

P3

10

How demultiplexing works

 host receives IP datagrams
 each datagram has source IP

address, destination IP
address

 each datagram carries one
transport-layer segment

 each segment has source,
destination port number

 host uses IP addresses &
port numbers to direct
segment to appropriate
socket

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

11

Connectionless demultiplexing

 recall: created socket has
host-local port #:
DatagramSocket mySocket1
= new DatagramSocket(12534);

 when host receives UDP
segment:
 checks destination port #

in segment

 directs UDP segment to
socket with that port #

 recall: when creating
datagram to send into
UDP socket, must specify
 destination IP address

 destination port #

IP datagrams with same
dest. port #, but different
source IP addresses
and/or source port
numbers will be directed
to same socket at dest

12

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket

(6428);

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

DatagramSocket
mySocket1 = new
DatagramSocket
(5775);

DatagramSocket
mySocket2 = new
DatagramSocket

(9157);

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

13

Connection-oriented demux

 TCP socket identified
by 4-tuple:
 source IP address

 source port number

 dest IP address

 dest port number

 demux: receiver uses
all four values to direct
segment to appropriate
socket

 server host may support
many simultaneous TCP
sockets:
 each socket identified by

its own 4-tuple

 web servers have
different sockets for
each connecting client
 non-persistent HTTP will

have different socket for
each request

14

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

P4

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,
dest port: 80 are demultiplexed to different sockets

server: IP
address B

15

Connection-oriented demux: example

transport

application

physical

link

network

P3
transport

application

physical

link

transport

application

physical

link

network

P2

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157

host: IP
address A

host: IP
address C

server: IP
address B

network

P3

source IP,port: C,5775
dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

P4

threaded server

Interview with Vinton Cerf

 One of the inventors of the TCP and IP
protocols.

 https://www.youtube.com/watch?v=lLiQnw
0b-YQ 0:00-6:00

16

https://www.youtube.com/watch?v=lLiQnw0b-YQ

17

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

18

UDP: User Datagram Protocol [RFC 768]

 “best effort” service,
UDP segments may be:

 lost

 delivered out-of-order
to app

 connectionless:

 no handshaking
between UDP sender,
receiver

 each UDP segment
handled independently
of others

 UDP use:
 streaming multimedia

apps (loss tolerant, rate
sensitive)

 DNS

 Simple Network
Management Protocol
(SNMP)

19

UDP: segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

 no connection
establishment (which can
add delay)

 simple: no connection
state at sender, receiver

 small header size

 no congestion control:
UDP can blast away as
fast as desired

why is there a UDP?

20

UDP checksum

sender:
 treat segment contents,

including header fields,
as sequence of 16-bit
integers

 checksum: addition
(one’s complement
sum) of segment
contents

 sender puts checksum
value into UDP
checksum field

receiver:
 compute checksum of

received segment

 check if computed
checksum equals checksum
field value:

 NO - error detected

 YES - no error detected.
But maybe errors
nonetheless? More later
….

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

21

Internet checksum: example

example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum

checksum

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

At the receiver, adding all words and checksum, the result
should be all ones. If there is a 0, some error must happen.

 The previous checksum algorithm may not
be able to detect even-number bit errors.

Odd-number bit errors are guaranteed to
detect

22

23

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP
 segment structure

 reliable data transfer

 flow control

 connection management

3.6 principles of congestion
control

3.7 TCP congestion control

24

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

25

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Principles of reliable data transfer
 important in application, transport, link layers

 top-10 list of important networking topics!

26

 characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

 important in application, transport, link layers
 top-10 list of important networking topics!

Principles of reliable data transfer

27

Reliable data transfer: getting started

send

side
receive

side

rdt_send(): called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,

to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet

arrives on rcv-side of channel

deliver_data(): called by

rdt to deliver data to upper

28

we’ll:

 incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

 consider only unidirectional data transfer
 but control info will flow on both directions!

 use finite state machines (FSM) to specify sender,
receiver

state
1

state
2

event causing state transition

actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event

actions

Reliable data transfer: getting started

29

rdt1.0: reliable transfer over a reliable channel

 underlying channel perfectly reliable
 no bit errors

 no loss of packets

 separate FSMs for sender, receiver:
 sender sends data into underlying channel

 receiver reads data from underlying channel

Wait for

call from

above packet = make_pkt(data)

uc_send(packet)

rdt_send(data)

extract (packet,data)

deliver_data(data)

Wait for

call from

below

rdt_rcv(packet)

sender receiver

30

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:
 acknowledgements (ACKs): receiver explicitly tells sender

that pkt received OK
 negative acknowledgements (NAKs): receiver explicitly tells

sender that pkt had errors
 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 receiver feedback: control msgs (ACK,NAK) rcvr-

>sender

rdt2.0: channel with bit errors

How do humans recover from “errors”
during conversation?

31

 underlying channel may flip bits in packet
 checksum to detect bit errors

 the question: how to recover from errors:

 acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

 negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

 sender retransmits pkt on receipt of NAK

 new mechanisms in rdt2.0 (beyond rdt1.0):
 error detection
 feedback: control msgs (ACK,NAK) from receiver to

sender

rdt2.0: channel with bit errors

32

rdt2.0: FSM specification

Wait for

call from

above

sndpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

belowsender

receiver
rdt_send(data)

L

33

rdt2.0: operation with no errors

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

34

rdt2.0: error scenario

Wait for

call from

above

snkpkt = make_pkt(data, checksum)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

udt_send(ACK)

rdt_rcv(rcvpkt) &&

notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&

isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&

corrupt(rcvpkt)

Wait for

ACK or

NAK

Wait for

call from

below

rdt_send(data)

L

35

rdt2.0 has a fatal flaw!

what happens if
ACK/NAK corrupted?

 sender doesn’t know
what happened at
receiver!

 can’t just retransmit:
possible duplicate

handling duplicates:
 sender retransmits

current pkt if ACK/NAK
corrupted

 sender adds sequence
number to each pkt

 receiver discards (doesn’t
deliver up) duplicate pkt

stop and wait
sender sends one packet,
then waits for receiver
response

Next class

 Please read Chapter 3.3-3.3 of your textbook
BEFORE Class

36

