<u>CMPE 150/L : Introduction to</u> <u>Computer Networks</u>

> Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 5

Any problem of your lab?

□ Access code?

Using Canvas?

Email me <cgian12@ucsc.edu>

Chapter 2: outline

- 2.1 principles of network applications
 - app architectures
 - app requirements
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 electronic mail
 - SMTP, POP3, IMAP
- 2.5 DNS

- 2.6 P2P applications
- 2.7 socket programming with UDP and TCP

Electronic mail

Three major components:

- user agents
- * mail servers
- simple mail transfer protocol: SMTP

User Agent

- * a.k.a. "mail reader"
- composing, editing, reading mail messages
- e.g., Outlook, iPhone mail client
- outgoing, incoming messages stored on server

Electronic mail: mail servers

mail servers:

- mailbox contains incoming messages for user
- message queue of outgoing (to be sent) mail messages
- SMTP protocol between mail servers to send email messages
 - client: sending mail server
 - "server": receiving mail server

Electronic Mail: SMTP [RFC 2821]

- uses TCP to reliably transfer email message from client to server, port 25
- direct transfer: sending server to receiving server
- three phases of transfer
 - handshaking (greeting)
 - transfer of messages
 - closure

Scenario: Alice sends message to Bob

- I) Alice uses UA to compose message "to" bob@someschool.edu
- 2) Alice's UA sends message to her mail server; message placed in message queue
- 3) client side of SMTP opens TCP connection with Bob's mail server

- 4) SMTP client sends Alice's message over the TCP connection
- 5) Bob's mail server places the message in Bob's mailbox
- 6) Bob invokes his user agent to read message

Sample SMTP interaction

- S: 220 hamburger.edu
- C: HELO crepes.fr
- S: 250 Hello crepes.fr, pleased to meet you
- C: MAIL FROM: <alice@crepes.fr>
- S: 250 alice@crepes.fr... Sender ok
- C: RCPT TO: <bob@hamburger.edu>
- S: 250 bob@hamburger.edu ... Recipient ok
- C: DATA
- S: 354 Enter mail, end with "." on a line by itself
- C: Do you like ketchup?
- C: How about pickles?
- C: .
- S: 250 Message accepted for delivery
- C: QUIT
- S: 221 hamburger.edu closing connection

SMTP: final words

- SMTP uses persistent connections
- SMTP requires message (header & body) to be in 7-bit ASCII

comparison with HTTP:

- ✤ HTTP: pull
- SMTP: push
- both have ASCII command/response interaction, status codes

Mail access protocols

- SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
 - POP: Post Office Protocol [RFC 1939]: authorization, download
 - IMAP: Internet Mail Access Protocol [RFC 1730]: more features, including manipulation of stored msgs on server
 - HTTP: gmail, Hotmail, Yahoo! Mail, etc.

POP3 and IMAP

POP3

- POP3 "download and delete" mode
 - Bob cannot re-read email if he changes client
- POP3 "download-andkeep": copies of messages on different clients
- POP3 is stateless across sessions

IMAP

- keeps all messages in one place: at server
- allows user to organize messages in folders
- keeps user state across sessions:
 - names of folders and mappings between message IDs and folder name

Chapter 2: outline

- 2.1 principles of network applications
 - app architectures
 - app requirements
- 2.2 Web and HTTP
- 2.3 FTP
- 2.4 electronic mail
 - SMTP, POP3, IMAP
- 2.5 DNS

- 2.6 P2P applications
- 2.7 socket programming with UDP and TCP

DNS: domain name system

Internet hosts, routers:

- IP address (32 bit) used for addressing datagrams
- "name", e.g., www.yahoo.com used by humans
- Q: how to map between IP address and name, and vice versa ?

Domain Name System:

- distributed database implemented in hierarchy of many name servers
- application-layer protocol: hosts, name servers communicate to resolve names (address/name translation)

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: services, structure

DNS services

- hostname to IP address translation
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?

- ✤ single point of failure
- traffic volume
- distant centralized database
- maintenance

A: doesn't scale!

DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- each ISP (residential ISP, company, university) has one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS name resolution example

 host at cis.poly.edu
wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

gaia.cs.umass.edu

DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?

gaia.cs.umass.edu

DNS: caching, updating records

- once (any) name server learns mapping, it caches mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be out-of-date (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- Requires amplification

Next class

Please read Chapter 2.5-2.7 of your textbook BEFORE Class