
CMPE 150/L : Introduction to
Computer Networks

Chen Qian

Computer Engineering

UCSC Baskin Engineering

Lecture 4

1

Reschedule office hour

As stated in an earlier email, we will have
an office hour 2-3pm tomorrow.

 If that doesn’t work for you, email me.

Only this week!

2

Chapter 1: roadmap

1.1 what is the Internet?
1.2 network edge
 end systems, access networks, links

1.3 network core
 packet switching, circuit switching, network structure

1.4 delay, loss, throughput in networks
1.5 protocol layers, service models
1.6 networks under attack: security

3

Bad guys can sniff packets

packet “sniffing”:
 broadcast media (shared ethernet, wireless)

 promiscuous network interface reads/records all packets
(e.g., including passwords!) passing by

A

B

C

src:B dest:A payload

 wireshark software used for labs is a (free) packet-

sniffer

 4

Bad guys can use fake addresses

IP spoofing: send packet with false source address

A

B

C

src:B dest:A payload

5

… lots more on security (Chapter 8 and CMPE 253)

Application Layer 6

Chapter 2 Application layer: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 7

Chapter 2: application layer

our goals:

 conceptual,
implementation aspects
of network application
protocols

 transport-layer
service models

 client-server
paradigm

 peer-to-peer
paradigm

 learn about protocols by
examining popular
application-level
protocols
 HTTP

 FTP

 SMTP / POP3 / IMAP

 DNS

 creating network
applications

 socket API

Application Layer 8

Some network apps

 e-mail

 web

 text messaging

 remote login

 P2P file sharing

 multi-user network games

 streaming stored video
(YouTube, Hulu, Netflix)

 voice over IP (e.g., Skype)

 real-time video
conferencing

 social networking

 search

 …

 …

Application Layer
 9

Creating a network app

write programs that:

 run on (different) end systems

 communicate over network

 e.g., web server software
communicates with browser
software

no need to write software for
network-core devices

 network-core devices do not
run user applications

 applications on end systems
allows for rapid app
development, propagation

application

transport

network

data link

physical

application

transport

network

data link

physical

application

transport

network

data link

physical

Application Layer 10

Application architectures

possible structure of applications:

 client-server

 peer-to-peer (P2P)

Application Layer 11

Client-server architecture

server:
 always-on host

 permanent IP address

 data centers for scaling

clients:
 communicate with server

 may be intermittently
connected

 may have dynamic IP
addresses

 do not communicate directly
with each other

client/server

Application Layer 12

P2P architecture

 no always-on server

 arbitrary end systems
directly communicate

 peers request service from
other peers, provide service
in return to other peers

 self scalability – new
peers bring new service
capacity, as well as new
service demands

 peers are intermittently
connected and change IP
addresses

 complex management

peer-peer

Client/server versus P2P

 Throughput and
Scalability:

 P2P wins!

 Because a server can
only serve limited
number of clients

 P2P allows clients
exchange data among
them.

 That’s why P2P
became popular in
early 2000

 Management

 C/S wins!

 Because users in P2P are
HIGHLY unreliable.

 In the recent years,
throughput are not a big
problem, management
became the main issue.

 That’s why we now switch
back to C/S

Application Layer 13

Application Layer 14

Hybrid of client-server and P2P
Skype

 voice-over-IP P2P application

 centralized server: finding address of remote party:

 client-client connection: direct (not through server)

Instant messaging

 chatting between two users is (can be) P2P

 centralized service: client presence detection/location

• user registers its IP address with central
server when it comes online

• user contacts central server to find IP
addresses of buddies

 Interview with Bram Cohen, inventor of
BitTorrent

 https://www.youtube.com/watch?v=u0xngxfbKAE

 2:25 – 6:25

Application Layer 15

https://www.youtube.com/watch?v=u0xngxfbKAE

Application Layer 16

Processes communicating

process: program running
within a host

 within same host, two
processes communicate
using inter-process
communication (defined by
OS)

 processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

 aside: applications with P2P

architectures have client

processes & server

processes

clients, servers

Application Layer 17

Sockets

 process sends/receives messages to/from its socket

 socket analogous to door

 sending process shoves message out door

 sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

Internet

controlled

by OS

controlled by
app developer

transport

application

physical

link

network

process

transport

application

physical

link

network

process
socket

Application Layer 18

Addressing processes

 to receive messages,
process must have identifier

 host device has unique 32-
bit IP address

 Q: does IP address of host
on which process runs
suffice for identifying the
process?

 identifier includes both IP
address and port numbers
associated with process on
host.

 example port numbers:
 HTTP server: 80

 mail server: 25

 to send HTTP message to
gaia.cs.umass.edu web
server:
 IP address: 128.119.245.12

 port number: 80

 A: no, many processes
can be running on same
host

Application Layer 19

App-layer protocol defines

 types of messages
exchanged,

 e.g., request, response

 message syntax:

 what fields in messages
& how fields are
delineated

 message semantics

 meaning of information
in fields

 rules for when and how
processes send & respond
to messages

open protocols:

 defined in RFCs

 allows for interoperability

 e.g., HTTP, SMTP

proprietary protocols:

 e.g., Skype

Application Layer 20

What transport service does an app need?

data integrity

 some apps (e.g., file transfer,
web transactions) require

100% reliable data transfer

 other apps (e.g., audio) can
tolerate some loss

timing

 some apps (e.g., Internet
telephony, interactive
games) require low delay
to be “effective”

throughput

 some apps (e.g.,
multimedia) require
minimum amount of
throughput to be
“effective”

 other apps (“elastic apps”)
make use of whatever
throughput they get

security

 encryption, data integrity,

…

Application Layer 21

Transport service requirements: common apps

application

file transfer

e-mail

Web documents

real-time audio/video

stored audio/video

interactive games

text messaging

data loss

no loss

no loss

no loss

loss-tolerant

loss-tolerant

loss-tolerant

no loss

throughput

elastic

elastic

elastic

audio: 5kbps-1Mbps

video:10kbps-5Mbps

same as above

few kbps up

elastic

time sensitive

no

no

no

yes, 100’s msec

yes, few secs

yes, 100’s msec

yes and no

Application Layer 22

Internet transport protocols services

TCP service:
 reliable transport between

sending and receiving
process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum throughput
guarantee, security

 connection-oriented: setup
required between client and
server processes

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
reliability, flow control,
congestion control,
timing, throughput
guarantee, security,
orconnection setup,

Q: why bother? Why is
there a UDP?

Application Layer 23

Internet apps: application, transport protocols

application

e-mail

remote terminal access

Web

file transfer

streaming multimedia

Internet telephony

application

layer protocol

SMTP [RFC 2821]

Telnet [RFC 854]

HTTP [RFC 2616]

FTP [RFC 959]

HTTP (e.g., YouTube),

RTP [RFC 1889]

SIP, RTP, proprietary

(e.g., Skype)

underlying

transport protocol

TCP

TCP

TCP

TCP

TCP or UDP

TCP or UDP

Application Layer 24

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 25

Web and HTTP

First, a review…
 web page consists of objects

 object can be HTML file, JPEG image, Java applet,
audio file,…

 web page consists of base HTML-file which
includes several referenced objects

 each object is addressable by a URL, e.g.,

 www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 26

HTTP overview

HTTP: hypertext
transfer protocol

 Web’s application layer
protocol

 client/server model
 client: browser that

requests, receives,
(using HTTP protocol)
and “displays” Web
objects

 server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running

Firefox browser

server

running

Apache Web

server

iphone running

Safari browser

Application Layer 27

HTTP overview (continued)

uses TCP:
 client initiates TCP

connection (creates
socket) to server, port 80

 server accepts TCP
connection from client

 HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

 TCP connection closed

Application Layer 28

HTTP connections

non-persistent HTTP

 at most one object
sent over TCP
connection

 connection then
closed

 downloading multiple
objects required
multiple connections

persistent HTTP

 multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 29

Non-persistent HTTP

suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request

message (containing URL) into

TCP connection socket.

Message indicates that client

wants object

someDepartment/home.index

1b. HTTP server at host

www.someSchool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

(contains text,

references to 10

jpeg images)

www.someSchool.edu/someDepartment/home.index

Application Layer 30

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

time

Application Layer 31

Non-persistent HTTP: response time

Round Trip Time (RTT)
definition: time for a small
packet to travel from client
to server and back

HTTP response time:

 one RTT to initiate TCP
connection

 one RTT for HTTP request
and first few bytes of HTTP
response to return

 file transmission time

 non-persistent HTTP
response time =

 2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

Application Layer 32

Persistent HTTP

non-persistent HTTP issues:
 requires 2 RTTs per object

 OS overhead for each TCP
connection

 browsers often open
parallel TCP connections
to fetch referenced objects

persistent HTTP:
 server leaves connection

open after sending
response

 subsequent HTTP
messages between same
client/server sent over
open connection

 client sends requests as
soon as it encounters a
referenced object

 as little as one RTT for all
the referenced objects

Application Layer 33

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:
 ASCII (human-readable format)

request line

(GET, POST,

HEAD commands)

header

 lines

carriage return,

line feed at start

of line indicates

end of header lines

GET /index.html HTTP/1.1\r\n

Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

Accept: text/html,application/xhtml+xml\r\n

Accept-Language: en-us,en;q=0.5\r\n

Accept-Encoding: gzip,deflate\r\n

Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n

Keep-Alive: 115\r\n

Connection: keep-alive\r\n

\r\n

carriage return character

line-feed character

Application Layer 34

HTTP response message

status line

(protocol

status code

status phrase)

header

 lines

data, e.g.,

requested

HTML file

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n

ETag: "17dc6-a5c-bf716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=ISO-8859-

1\r\n

\r\n

data data data data data ...

Application Layer 35

HTTP response status codes

200 OK

 request succeeded, requested object later in this msg

301 Moved Permanently

 requested object moved, new location specified later in this
msg (Location:)

400 Bad Request

 request msg not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

 status code appears in 1st line in server-to-
client response message.

 some sample codes:

Application Layer 36

User-server state: cookies

many Web sites use cookies

four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:

 Susan always access Internet
from PC

 visits specific e-commerce
site for first time

 when initial HTTP requests
arrives at site, site creates:

 unique ID

 entry in backend
database for ID

Application Layer 37

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg Amazon server

creates ID

1678 for user create
 entry

usual http response
set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734

amazon 1678

backend

database

Application Layer 38

Cookies (continued)

what cookies can be used
for:

 authorization
 shopping carts
 recommendations
 user session state (Web

e-mail)

cookies and privacy:

 cookies permit sites to
learn a lot about you

 you may supply name and
e-mail to sites

aside

how to keep “state”:
 protocol endpoints: maintain state at

sender/receiver over multiple
transactions

 cookies: http messages carry state

Application Layer 39

Web caches (proxy server)

 user sets browser: Web
accesses via cache

 browser sends all HTTP
requests to cache

 object in cache: cache
returns object

 else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy

server

client origin

server

origin

server

Application Layer 40

More about Web caching

 cache acts as both
client and server
 server for original

requesting client

 client to origin server

 typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

 reduce response time
for client request

 reduce traffic on an
institution’s access link

When is cache not good?

 Every client of the ISP
requests different
content.
 Waste time on visiting

cache server

Application Layer 41

Caching example:

origin

servers
public

 Internet

institutional

network
1 Gbps LAN

1.54 Mbps

access link

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%

 access link utilization = 99%

 total delay = Internet delay + access
delay + LAN delay

 = 2 sec + minutes + usecs

problem!

Application Layer 42

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%

 access link utilization = 99%

 total delay = Internet delay + access
delay + LAN delay

 = 2 sec + minutes + usecs

Caching example: fatter access link

origin

servers

1.54 Mbps

access link
154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public

 Internet

institutional

network
1 Gbps LAN

institutional

network
1 Gbps LAN

Application Layer 43

Caching example: install local cache

origin

servers

1.54 Mbps

access link

local web
cache

assumptions:
 avg object size: 100K bits

 avg request rate from browsers to
origin servers:15/sec

 avg data rate to browsers: 1.50 Mbps

 RTT from institutional router to any
origin server: 2 sec

 access link rate: 1.54 Mbps

consequences:
 LAN utilization: 15%

 access link utilization = 100%

 total delay = Internet delay + access
delay + LAN delay

 = 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public

 Internet

Application Layer 44

Caching example: install local cache

Calculating access link
utilization, delay with cache:

 suppose cache hit rate is 0.4
 40% requests satisfied at cache,

60% requests satisfied at origin

origin

servers

1.54 Mbps

access link

 access link utilization:
 60% of requests use access link

 data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
 utilization = 0.9/1.54 = .58

 total delay
 = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)

 = 0.6 (2.01) + 0.4 (~msecs)

 = ~ 1.2 secs

 less than with 154 Mbps link (and
cheaper too!)

public

 Internet

institutional

network
1 Gbps LAN

local web
cache

 Interview with early developers of Web Browsers

 https://www.youtube.com/watch?v=_L3Y2_YiT-A

Application Layer 45

https://www.youtube.com/watch?v=_L3Y2_YiT-A
https://www.youtube.com/watch?v=_L3Y2_YiT-A
https://www.youtube.com/watch?v=_L3Y2_YiT-A

Application Layer 46

Chapter 2: outline

2.1 principles of network
applications
 app architectures

 app requirements

2.2 Web and HTTP

2.3 FTP

2.4 electronic mail
 SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 socket programming
with UDP and TCP

Application Layer 47

FTP: the file transfer protocol

file transfer
FTP

server

FTP

user

interface

FTP

client

local file

system

remote file

system

user

at host

 transfer file to/from remote host
 client/server model

 client: side that initiates transfer (either to/from remote)

 server: remote host

 ftp: RFC 959
 ftp server: port 21

Application Layer 48

FTP: separate control, data connections

 FTP client contacts FTP server
at port 21, using TCP

 client authorized over control
connection

 client browses remote
directory, sends commands
over control connection

 when server receives file
transfer command, server
opens 2nd TCP data
connection (for file) to client

 after transferring one file,
server closes data connection

FTP
client

FTP
server

TCP control connection,
server port 21

TCP data connection,
server port 20

 server opens another TCP
data connection to transfer
another file

 FTP server maintains
“state”: current directory,
earlier authentication

In practice

 Users do not directly
write FTP commands.

 Instead, the FTP
client/server software
includes those
commands.
 Such as Filezilla

 Users operate on FTP
through the APIs.

 Many files transfers
today are through
HTTP.

Application Layer 50

Next class

 Please read Chapter 2.3-2.4 of your textbook
BEFORE Class

51

